题目内容
【题目】函数满足:
①;②在区间内有最大值无最小值;
③在区间内有最小值无最大值;④经过
(1)求的解析式;
(2)若,求值;
(3)不等式的解集不为空集,求实数的范围.
【答案】(1)(2)(3)
【解析】
(1)根据条件①②③可判断出和为的两条相邻的对称轴,由此可知周期,进而得到;根据条件①②知;当时,的取值不合题意,可知,此时可求出;代入点可求得,从而得到函数解析式;(2)通过已知等式可求得;利用诱导公式变形可知,根据同角三角函数平方关系求得结果;(3)设,则,将不等式解集不为空集等价于,根据二次函数图象可求得最大值,从而得到不等式,解不等式求得结果.
(1)由和条件②知:为的一条对称轴,且在处取得最大值
由和条件③知:为的一条对称轴,且在处取得最小值
综合条件①②③可知和为相邻对称轴
,解得:
若,则,即
不符合
,即
又
由条件④知:,解得:
(2)由(1)知,
(3)
令,则不等式可表示为:
又
不等式有解,则,解得:
即不等式的解集不为空集时,
【题目】在十九大“建设美丽中国”的号召下,某省级生态农业示范县大力实施绿色生产方案,对某种农产品的生产方式分别进行了甲、乙两种方案的改良。为了检查甲、乙两种方案的改良效果,随机在这两种方案中各任意抽取了40件产品作为样本逐件称出它们的重量(单位:克),重量值落在之间的产品为合格品,否则为不合格品。下表是甲、乙两种方案样本频数分布表。
产品重量 | 甲方案频数 | 乙方案频数 |
6 | 2 | |
8 | 12 | |
14 | 18 | |
8 | 6 | |
4 | 2 |
(1)根据上表数据求甲(同组中的重量值用组中点数值代替)方案样本中40件产品的平均数和中位数
(2)由以上统计数据完成下面列联表,并回答有多大把握认为“产品是否为合格品与改良方案的选择有关”.
甲方案 | 乙方案 | 合计 | |
合格品 | |||
不合格品 | |||
合计 |
参考公式:,其中.
临界值表:
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.814 | 5.024 | 6.635 | 10.828 |