题目内容
【题目】已知向量,向量,函数.
(1)求的单调减区间;
(2)将函数图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移个单位长度,得到的图象,求函数的解析式及其图象的对称中心.
【答案】(1)单调减区间为, .(2)对称中心为, .
【解析】试题分析:(1)根据, 可得,则=,于是可根据二倍角公式化为正弦型函数求单调区间;(2)由(1)知 ,将函数图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移个单位长度,得到,于是可以求对此中心.
试题解析:(1)
令 ,得
,
所以的单调减区间为, .
(2)由(1)知 ,把的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到的图象,再把得到的图象向左平移个单位,得到的图象,因此,
令,得 ,
所以函数图象的对称中心为, .
【题目】某同学用“五点法”画函数f(x)=Asin(ωx+φ)(ω>0,|φ|< )在某一周期内的图象时,列表并填入了部分数据,如下表:
ωx+φ | 0 | π | 2π | ||
x | |||||
Asin(ωx+φ) | 3 | 0 |
(1)请将上表空格中的数据在答卷的相应位置上,并求函数f(x)的解析式;
(2)若y=f(x)的图象上所有点向左平移 个单位后对应的函数为g(x),求当x∈[﹣ , ]时,函数y=g(x)的值域.
【题目】某学校为了了解该校学生对于某项运动的爱好是否与性别有关,通过随机抽查110名学生,得到如下2×2的列联表:
喜欢该项运动 | 不喜欢该项运动 | 总计 | |
男 | 40 | 20 | 60 |
女 | 20 | 30 | 50 |
总计 | 60 | 50 | 110 |
由公式,算得
附表:
0.025 | 0.01 | 0.005 | |
5.024 | 6.635 | 7.879 |
参照附表,以下结论正确是( )
A. 有以上的把握认为“爱好该项运动与性别有关”
B. 有以上的把握认为“爱好该项运动与性别无关”
C. 有以上的把握认为“爱好该项运动与性别有关”
D. 有以上的把握认为“爱好该项运动与性别无关”