题目内容
如图,在四棱锥PABCD中,PA⊥底面ABCD,AC⊥CD,∠DAC=60°,AB=BC=AC,E是PD的中点,F为ED的中点.
(1)求证:平面PAC⊥平面PCD;
(2)求证:CF∥平面BAE.
(1)求证:平面PAC⊥平面PCD;
(2)求证:CF∥平面BAE.
见解析
(1)因为PA⊥底面ABCD,所以PA⊥CD,(2分)
又AC⊥CD,且AC∩PA=A,所以CD⊥平面PAC,(4分)
又CD?平面PCD,所以平面PAC⊥平面PCD.(7分)
(2)取AE中点G,连接FG,BG.
因为F为ED的中点,所以FG∥AD且FG=AD.(9分)
在△ACD中,AC⊥CD,∠DAC=60°,
所以AC=AD,所以BC=AD.(11分)
在△ABC中,AB=BC=AC,所以∠ACB=60°,
从而∠ACB=∠DAC,所以AD∥BC.
综上,FG∥BC,FG=BC,四边形FGBC为平行四边形,所以CF∥BG.(13分)
又BG?平面BAE,CF?平面BAE,所以CF∥平面BAE.(14分)
又AC⊥CD,且AC∩PA=A,所以CD⊥平面PAC,(4分)
又CD?平面PCD,所以平面PAC⊥平面PCD.(7分)
(2)取AE中点G,连接FG,BG.
因为F为ED的中点,所以FG∥AD且FG=AD.(9分)
在△ACD中,AC⊥CD,∠DAC=60°,
所以AC=AD,所以BC=AD.(11分)
在△ABC中,AB=BC=AC,所以∠ACB=60°,
从而∠ACB=∠DAC,所以AD∥BC.
综上,FG∥BC,FG=BC,四边形FGBC为平行四边形,所以CF∥BG.(13分)
又BG?平面BAE,CF?平面BAE,所以CF∥平面BAE.(14分)
练习册系列答案
相关题目