题目内容

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
2
2
,F1,F2分别是椭圆的左、右焦点,过点F2与x轴不垂直的直线l交椭圆于A、B两点,则△ABF1的周长为4
2

(1)求椭圆的方程;
(2)若C(
1
3
,0),使得|AC|=|BC|,求直线l的方程.
(1)∵椭圆
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
2
2

F1,F2分别是椭圆的左、右焦点,
过点F2与x轴不垂直的直线l交椭圆于A、B两点,△ABF1的周长为4
2

c
a
=
2
2
4a=4
2
,∴a=
2
,c=1,∴b=1,
∴椭圆方程为
x2
2
+y2=1

(2)∵过点F2(1,0)与x轴不垂直的直线l交椭圆于A、B两点,
∴设直线AB的方程为x=ny+1,
联立
x=ny+1
x2
2
+y2=1
,得(2+n2)y2+2ny-1=0,
△=4n2+4(2+n2)>0,
设A(x1,y1),B(x2,y2),则y1+y2=
-2n
2+n2
,y1y2=
-1
2+n2

∴x1+x2=n(y1+y2)+2=
-2n2
2+n2
+2

∵C(
1
3
,0)使得|AC|=|BC|,
(x1-
1
3
)2+y12
=
(x2-
1
3
)2+y22

x12-
2
3
x1+y12=x22-
2
3
x2+y22

整理,得(x1+x2-
2
3
)(x1-x2)+(y1+y2)(y1-y2)=0,
∴k=
y1-y2
x1-x2
=
x1+x2-
2
3
-(y1+y2)
=
-2n2
2+n2
+2-
2
3
2n
2+n2
=
4
3n
-
n
3

∵k=
1
n
,∴
1
n
=
4
3n
-
n
3
,解得n=±1,
∴直线l的方程为x=y+1或x=-y+1,
即直线l的方程为x-y-1=0或x+y-1=0.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网