题目内容
6.如图,设抛物线y2=4x的焦点为F,O为抛物线的顶点.过F作抛物线的弦PQ,直线OP,OQ分别交直线x-y+2=0于点M,N.(Ⅰ)当PQ∥MN时,求$\overrightarrow{{O}{P}}•\overrightarrow{{O}Q}$的值;
(Ⅱ)设直线PQ的方程为x-my-1=0,记△OMN的面积为S(m),求S(m)关于m的解析式.
分析 (I)由抛物线y2=4x,可得焦点为F(1,0),设P(x1,y1),Q(x2,y2),由PQ∥MN,直线MN的方程为:y=x+2.可得直线PQ的方程为:y=x-1.与抛物线方程联立可得根与系数的关系,利用数量积运算性质即可得出;
(II)联立$\left\{\begin{array}{l}{my=x-1}\\{{y}^{2}=4x}\end{array}\right.$,化为y2-4my-4=0,可得根与系数的关系,直线OP的方程为:$y=\frac{{y}_{1}}{{x}_{1}}x$,联立$\left\{\begin{array}{l}{x-y+2=0}\\{y=\frac{{y}_{1}}{{x}_{1}}x}\end{array}\right.$,解得M,同理可得N.可得|y1-y2|=$\sqrt{({y}_{1}+{y}_{2})^{2}-4{y}_{1}{y}_{2}}$.利用两点之间的距离公式可得|MN|,点O到MN的距离为d.即可得出S(m)=$\frac{1}{2}d$|MN|.
解答 解:(I)由抛物线y2=4x,可得焦点为F(1,0),
设P(x1,y1),Q(x2,y2),
∵PQ∥MN,直线MN的方程为:y=x+2.
直线PQ的方程为:y=x-1.
$\left\{\begin{array}{l}{y=x-1}\\{{y}^{2}=4x}\end{array}\right.$,化为y2-4y-4=0,
∴y1+y2=4,y1y2=-4.
x1x2=(y1+1)(y2+1)=y1y2+(y1+y2)+1=-4+4+1=1.
∴$\overrightarrow{{O}{P}}•\overrightarrow{{O}Q}$=x1x2+y1y2=1-4=-3.
(II)联立$\left\{\begin{array}{l}{my=x-1}\\{{y}^{2}=4x}\end{array}\right.$,化为y2-4my-4=0,
∴y1+y2=4m,y1y2=-4.
x1x2=(my1+1)(my2+1)=m2y1y2+m(y1+y2)+1=1.
直线OP的方程为:$y=\frac{{y}_{1}}{{x}_{1}}x$,联立$\left\{\begin{array}{l}{x-y+2=0}\\{y=\frac{{y}_{1}}{{x}_{1}}x}\end{array}\right.$,解得x=$\frac{2{x}_{1}}{{y}_{1}-{x}_{1}}$,y=$\frac{2{y}_{1}}{{y}_{1}-{x}_{1}}$.
∴M$(\frac{2{x}_{1}}{{y}_{1}-{x}_{1}},\frac{2{y}_{1}}{{y}_{1}-{x}_{1}})$,
同理可得:N$(\frac{2{x}_{2}}{{y}_{2}-{x}_{2}},\frac{2{y}_{2}}{{y}_{2}-{x}_{2}})$.
|y1-y2|=$\sqrt{({y}_{1}+{y}_{2})^{2}-4{y}_{1}{y}_{2}}$=$\sqrt{16{m}^{2}+16}$=4$\sqrt{{m}^{2}+1}$.
∴|MN|=$\sqrt{(\frac{2{x}_{1}}{{y}_{1}-{x}_{1}}-\frac{2{x}_{2}}{{y}_{2}-{x}_{2}})^{2}+(\frac{2{y}_{1}}{{y}_{1}-{x}_{1}}-\frac{2{y}_{2}}{{y}_{2}-{x}_{2}})^{2}}$=$\frac{2\sqrt{2}|{x}_{1}{y}_{2}-{x}_{2}{y}_{1}|}{|{y}_{1}{y}_{2}-{x}_{1}{y}_{2}-{x}_{2}{y}_{1}+{x}_{1}{x}_{2}|}$=$\frac{2\sqrt{2}|{y}_{1}-{y}_{2}|}{|3-4m|}$=$\frac{8\sqrt{2}\sqrt{{m}^{2}+1}}{|3-4m|}$,
点O到MN的距离d=$\frac{2}{\sqrt{2}}$=$\sqrt{2}$.
∴S(m)=$\frac{1}{2}d$|MN|=$\frac{1}{2}×\sqrt{2}×$$\frac{8\sqrt{2}\sqrt{{m}^{2}+1}}{|3-4m|}$=$\frac{8\sqrt{{m}^{2}+1}}{|3-4m|}$.
点评 本题考查了抛物线的标准方程及其性质、直线与抛物线相交转化为方程联立可得根与系数的关系、数量积运算性质、两点之间的距离公式、点到直线的距离公式、三角形面积计算公式,考查了推理能力与计算能力,属于难题.
A. | 2$\sqrt{2}$或$\sqrt{2}$ | B. | $\sqrt{2}$ | C. | $\frac{\sqrt{10}}{5}$ | D. | 2$\sqrt{2}$ |
A. | 6个 | B. | 7个 | C. | 10个 | D. | 无数个 |