题目内容

【题目】已知椭圆 的右焦点为F(2,0),M为椭圆的上顶点,O为坐标原点,且△MOF是等腰直角三角形.
(1)求椭圆的方程;
(2)过点M分别作直线MA,MB交椭圆于A,B两点,设两直线的斜率分别为k1 , k2 , 且k1+k2=8,证明:直线AB过定点( ).

【答案】
(1)解:由△MOF是等腰直角三角形,得c2=b2=4,a2=8,

故椭圆方程为: =1.


(2)证明:

①若直线AB的斜率存在,设AB的方程为:y=kx+m,依题意得m≠±2,

设A(x1,y1),B(x2,y2),

,得(1+2k2)x2+4kmx+2m2﹣8=0,

由已知 k1+k2=8,可得

所以 ,即

所以 ,整理得

故直线AB的方程为 ,即y=k( )﹣2.

所以直线AB过定点( ).

②若直线AB的斜率不存在,设AB方程为x=x0

设A(x0,y0),B(x0,﹣y0),

由已知 ,得

此时AB方程为 ,显然过点( ).

综上,直线AB过定点( ).


【解析】(1)由△MOF是等腰直角三角形,得c2=b2=4,再根据a2=b2+c2可求得a;(2)分情况讨论:①当直线AB的斜率存在时,设AB的方程为:y=kx+m,联立直线AB方程与椭圆方程消掉y得x的二次方程,由韦达定理及k1+k2=8可得关于k,m的关系式,消m代入直线AB方程可求得定点坐标;②若直线AB的斜率不存在,设AB方程为x=x0 , 由已知可求得AB方程,易验证其过定点;
【考点精析】掌握椭圆的标准方程是解答本题的根本,需要知道椭圆标准方程焦点在x轴:,焦点在y轴:

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网