题目内容

【题目】已知: =(﹣ sinωx,cosωx), =(cosωx,cosωx),ω>0,记函数f(x)= ,且f(x)的最小正周期为π.
(1)求ω的值;
(2)求f(x)的单调递减区间.

【答案】
(1)解:∵ =(﹣ sinωx,cosωx), =(cosωx,cosωx),

= =

∵f(x)的最小正周期为π,

∴T= =π,得ω=1


(2)解:由(1)得f(x)=cos(2x+ )+

由2kπ≤2x+ ≤2kπ+π,k∈Z,

解得kπ﹣ ≤x≤kπ+ ,k∈Z,k∈Z.

即函数的单调递减区间为[﹣ +kπ,kπ+ ],k∈Z


【解析】(1)根据向量数量积的坐标公式结合三角函数的辅助角公式进行化简,结合周期公式建立方程进行求解;(2)根据三角函数的单调性的性质进行求解即可.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网