题目内容

对于任意满足θ∈[0,
π
2
]
的θ,使得|sinθ-pcosθ-q|≤
2
-1
2
恒成立的所有实数对(p,q)是______.
∵对于任意满足θ∈[0,
π
2
]
的θ,使得|sinθ-pcosθ-q|≤
2
-1
2
恒成立
∴当θ=0时,|p+q|≤
2
-1
2

当θ=
π
4
时,|
2
2
(1-p)-q|≤
2
-1
2

当θ=
π
2
时,|1-q|≤
2
-1
2

①+②-1-2
2
≤p≤-1
由②③消去q得-1≤p≤3-2
2

∴p=-1
∴|
2
sin(θ+
π
4
)-q|≤
2
-1
2

∴|
2
-q|≤
2
-1
2
,|1-q|≤
2
-1
2

解得q=
1+
2
2

∴实数对(p,q)是(-1,
1+
2
2
)

故答案为:(-1,
1+
2
2
)
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网