题目内容

设f(x)是定义在R上的函数,且对任意实数x,恒有f(x+2)=-3f(x).当x∈[0,2]时,f(x)=2x-x2.则f(0)+f(-1)+f(-1)+…+f(-2014)=(  )
A.-
3
4
(1-31007
B.-
3
4
(1+31007
C.-
1
4
(1-
1
31007
D.-
1
4
(1+
1
31007
∵当x∈[0,2]时,f(x)=2x-x2
∴当x=0时,f(0)=0,当x=1时,f(1)=1,
又∵f(x+2)=-3f(x),
∴当x=-2时,f(0)=-3f(-2),故f(-2)=0,
当x=-1时,f(1)=-3f(-1),故f(-1)=-
1
3

以此类推,f(-4)=f(-6)=…=f(-2014)=0,
故f(0)+f(-2)+f(-4)+…+f(-2014)=0,
∵f(x+2)=-3f(x),
f(x)
f(x+2)
=-
1
3

故f(-1),f(-3),f(-5),…,f(-2013)构成以f(-1)为首项,-
1
3
为公比的等比数列,
∴f(-1)+f(-3)+f(-5)+…+f(-2013)=
-
1
3
×[1-(-
1
3
)1007]
1-(-
1
3
)
=-
1
4
(1+
1
31007
)

∴f(0)+f(-1)+f(-1)+…+f(-2014)=[f(0)+f(-2)+f(-4)+…+f(-2014)]+[f(-1)+f(-3)+f(-5)+…+f(-2013)]=0+-
1
4
(1+
1
31007
)
=-
1
4
(1+
1
31007
)

∴f(0)+f(-1)+f(-1)+…+f(-2014)=-
1
4
(1+
1
31007
)

故选:D.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网