题目内容
若数列{an}的前n项和为Sn,a1=1,Sn+an=2n(n∈N*).
(1)证明:数列{an-2}为等比数列;
(2)求数列{Sn}的前n项和Tn.
(1)证明:数列{an-2}为等比数列;
(2)求数列{Sn}的前n项和Tn.
(1)∵Sn+an=2n,①
∴Sn-1+an-1=2(n-1),n≥2②
由①-②得,2an-an-1=2,n≥2,∴2(an-2)=an-1-2,n≥2,
∵a1-2=-1,
∴数列{an-2}以-1为首项,
为公比的等比数列.
(2)由(1)得an-2=-(
)n-1,∴an=2-(
)n-1,
∵Sn+an=2n,∴Sn=2n-an=2n-2+(
)n-1,
∴Tn=[0+(
)0]+[2+(
)]+…+[2n-2+(
)n-1]
=[0+2+…+(2n-2)]+[(
)0+(
)+…+(
)n-1]
=
+
=n2-n+2-(
)n-1.
∴Sn-1+an-1=2(n-1),n≥2②
由①-②得,2an-an-1=2,n≥2,∴2(an-2)=an-1-2,n≥2,
∵a1-2=-1,
∴数列{an-2}以-1为首项,
1 |
2 |
(2)由(1)得an-2=-(
1 |
2 |
1 |
2 |
∵Sn+an=2n,∴Sn=2n-an=2n-2+(
1 |
2 |
∴Tn=[0+(
1 |
2 |
1 |
2 |
1 |
2 |
=[0+2+…+(2n-2)]+[(
1 |
2 |
1 |
2 |
1 |
2 |
=
n(2n-2) |
2 |
1-(
| ||
1-
|
1 |
2 |
练习册系列答案
相关题目