题目内容

【题目】已知函数y=f(2x+1)定义域是[﹣1,0],则y=f(x+1)的定义域是(  )
A.[﹣1,1]
B.[0,2]
C.[﹣2,0]
D.[﹣2,2]

【答案】C
【解析】解:由函数f(2x+1)的定义域是[﹣1,0],得﹣1≤x≤0.
∴﹣1≤2x+1≤1,即函数f(x)的定义域是[﹣1,1],
再由﹣1≤x+1≤1,得:﹣2≤x≤0.
∴函数y=f(x+1)的定义域是[﹣2,0].
故选:C.
【考点精析】掌握函数的定义域及其求法是解答本题的根本,需要知道求函数的定义域时,一般遵循以下原则:①是整式时,定义域是全体实数;②是分式函数时,定义域是使分母不为零的一切实数;③是偶次根式时,定义域是使被开方式为非负值时的实数的集合;④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1,零(负)指数幂的底数不能为零.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网