ÌâÄ¿ÄÚÈÝ
7£®Èçͼ£¬¾ØÐÎABCDÖУ¬AB=2£¬BC=4£¬ÒÔ¾ØÐÎABCDµÄÖÐÐÄΪԵ㣬¹ý¾ØÐÎABCDµÄÖÐÐÄƽÐÐÓÚBCµÄÖ±ÏßΪxÖᣬ½¨Á¢Ö±½Ç×ø±êϵ£¬£¨1£©Çóµ½Ö±ÏßAD¡¢BCµÄ¾àÀëÖ®»ýΪ1µÄ¶¯µãPµÄ¹ì¼££»
£¨2£©Èô¶¯µãP·Ö±ðµ½Ï߶ÎAB¡¢CDÖеãM¡¢NµÄ¾àÀëÖ®»ýΪ4£¬Ç󶯵ãPµÄ¹ì¼£·½³Ì£¬²¢Ö¸³öÇúÏßµÄÐÔÖÊ£¨¶Ô³ÆÐÔ¡¢¶¥µã¡¢·¶Î§£©£»
£¨3£©ÒÑ֪ƽÃæÉϵÄÇúÏßC¼°µãP£¬ÔÚCÉÏÈÎÈ¡Ò»µãQ£¬Ï߶ÎPQ³¤¶ÈµÄ×îСֵ³ÆΪµãPµ½ÇúÏßCµÄ¾àÀ룮Èô¶¯µãPµ½Ï߶ÎABµÄ¾àÀëÓëÉäÏßCDµÄ¾àÀëÖ®»ýΪ4£¬Ç󶯵ãPµÄ¹ì¼£·½³Ì£¬²¢×÷³ö¶¯µãPµÄ´óÖ¹켣£®
·ÖÎö £¨1£©ÀûÓõ½Ö±ÏßAD¡¢BCµÄ¾àÀëÖ®»ýΪ1£¬½¨Á¢·½³Ì£¬¼´¿ÉÇó³ö¶¯µãPµÄ¹ì¼££»
£¨2£©$\sqrt{£¨x+2£©^{2}+{y}^{2}}$•$\sqrt{£¨x-2£©^{2}+{y}^{2}}$=4£¬»¯¼ò¿ÉµÃ½áÂÛ£»
£¨3£©Í¬Ê±´Ó¼¸ºÎºÍ´úÊý½Ç¶È½øÐзÖÎö£¬¼´¿ÉµÃ³ö½áÂÛ£®
½â´ð ½â£º£¨1£©ÉèP£¨x£¬y£©£¬Ôò|y-1||y+1|=1¡2·Ö
»¯¼òµÃy=¡À$\sqrt{2}$»òy=0£®
¹Ê¶¯µãPµÄ¹ì¼£ÎªÈýÌõƽÐÐÏߣ»¡4·Ö
£¨2£©$\sqrt{£¨x+2£©^{2}+{y}^{2}}$•$\sqrt{£¨x-2£©^{2}+{y}^{2}}$=4£¬
»¯¼òµÃ $£¨\sqrt{{x}^{2}+1}-2£©^{2}+{y}^{2}=1$
¶Ô³ÆÐÔ£º¹ØÓÚԵ㡢x¡¢yÖá¶Ô³Æ£»¡6·Ö
¶¥µã£º£¨2$\sqrt{2}$£¬0£©£¬£¨-2$\sqrt{2}$£¬0£©£¬£¨0£¬0£©£»¡8·Ö
·¶Î§£º|x|¡Ü2$\sqrt{2}$£¬|y|¡Ü1¡10·Ö
£¨3£©Í¬Ê±´Ó¼¸ºÎºÍ´úÊý½Ç¶È½øÐзÖÎö
µ±y£¼-1ʱ£¬y=-1-$\sqrt{4\sqrt{{x}^{2}+1}-{x}^{2}-4}$£¬¡12·Ö
µ±-1¡Üy¡Ü1ʱ£¬x=¡À2$\sqrt{2}$»òx=0£¬¡14·Ö
µ±y£¾1ʱ£¬y=1+$\sqrt{\frac{16}{£¨x-2£©^{2}}-£¨x+2£©^{2}}$£¬¡16·Ö
×÷¹ì¼£´óÖÂÈçͼ£®·ÖÈý¸öÇøÓò¸ø·Ö£º
¢ÙÔÚÖ±Ïßy=-1µÄÏ·½£ºÁ½¶ÎÇúÏߣ»
¢ÚÔÚÁ½Ö±Ïßy=-1£¬y=1Ö®¼ä£ºÈýÌõƽÐÐÏߣ»
¢ÛÔÚÖ±Ïßy=1µÄÉÏ·½£ºÈýÌõÇúÏߣ®¡18·Ö£®
µãÆÀ ±¾Ì⿼²é¹ì¼£·½³Ì£¬¿¼²éѧÉúµÄ¼ÆËãÄÜÁ¦£¬È·¶¨¹ì¼£·½³ÌÊǹؼü£®
A£® | f£¨x£©ÊÇÆ溯ÊýÇÒÔÚ£¨-$\frac{¦Ð}{6}$£¬$\frac{¦Ð}{6}$£©ÉϵÝÔö | B£® | f£¨x£©ÊÇÆ溯ÊýÇÒÔÚ£¨-$\frac{¦Ð}{6}$£¬$\frac{¦Ð}{6}$£©Éϵݼõ | ||
C£® | f£¨x£©ÊÇżº¯ÊýÇÒÔÚ£¨0£¬$\frac{¦Ð}{6}$£©ÉϵÝÔö | D£® | f£¨x£©ÊÇżº¯ÊýÇÒÔÚ£¨0£¬$\frac{¦Ð}{6}$£©Éϵݼõ |
A£® | $\frac{¦Ð}{6}$ | B£® | $\frac{¦Ð}{2}$ | C£® | $\frac{7¦Ð}{6}$ | D£® | $\frac{¦Ð}{3}$ |