题目内容
已知函数
,当
时,恒有
.
(1)求证:
是奇函数;
(2)如果
为正实数,
,并且
,试求
在区间[-2,6]上的最值.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055537244447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055537275532.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055537291774.png)
(1)求证:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055537244447.png)
(2)如果
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055537322266.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055537338525.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055537369583.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055537244447.png)
(1)证明见解析;(2)最大值为1,最小值为-3..
试题分析:解题思路:(1)利用奇函数的定义进行证明;(2)先证明
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055537244447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055537416441.png)
规律总结:(1)证明函数奇偶性的步骤:①验证函数定义域是否关于原点对称,②判断
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055537447462.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055537244447.png)
试题解析: (1)函数定义域为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055537478303.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055537509847.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055537525407.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055537540756.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055537556472.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055537572653.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055537587481.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055537618671.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055537634579.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055537244447.png)
(2)设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055537665683.png)
则
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240555376811517.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055537712556.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055537728679.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055537728679.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055537244447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055537478303.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055537790503.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055537821453.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240555378371053.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240555378521089.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055537244447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055537416441.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目
题目内容