题目内容
【题目】在平面直角坐标系xOy中,曲线C的参数方程为,(θ为参数),以原点为极点,x轴非负半轴为极轴建立极坐标系.
(1)求曲线C的极坐标方程;
(2)在平面直角坐标系xOy中,A(﹣2,0),B(0,﹣2),M是曲线C上任意一点,求△ABM面积的最小值.
【答案】(1)ρ2﹣6ρcosθ﹣8ρsinθ+21=0.(2)9﹣2.
【解析】
(1)先将化简成直角坐标方程,再利用与化简即可.
(2)由为以为底,到的距离为高可知要求面积的最小值即求到的距离最大值.再设求解最值即可.
(1)∵曲线C的参数方程为,(θ为参数),有.
上下平方相加得曲线C的直角坐标方程为,
化简得
将与,代入得曲线C的直角坐标方程有:
.
(2)设点到直线AB:x+y+2=0的距离为d,
则,
当sin()=﹣1时,d有最小值,
所以△ABM面积的最小值S9﹣2.
练习册系列答案
相关题目
【题目】某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售.如果当天卖不完,剩下的玫瑰花做垃圾处理.
(Ⅰ)若花店一天购进17枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式.
(Ⅱ)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:
日需求量n | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
频数 | 10 | 20 | 16 | 16 | 15 | 13 | 10 |
(i)假设花店在这100天内每天购进17枝玫瑰花,求这100天的日利润(单位:元)的平均数;
(ii)若花店一天购进17枝玫瑰花,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于75元的概率.
(命题意图)本题主要考查给出样本频数分别表求样本的均值、将频率做概率求互斥事件的和概率,是简单题.