题目内容
9.设函数y=f(x)在R上有定义,对于任一给定的正数p,定义函数fp(x)=$\left\{\begin{array}{l}{f(x),f(x)≤p}\\{p,f(x)>p}\end{array}\right.$,则称函数fp(x)为f(x)的“p界函数”若给定函数f(x)=x2-2x-1,p=2,则下列结论不成立的是( )A. | fp[f(0)]=f[fp(0)] | B. | fp[f(1)]=f[fp(1)] | C. | fp[fp(2)]=f[f(2)] | D. | fp[f(3)]=f[f(3)] |
分析 由于函数f(x)=x2-2x-1,p=2,求出f2(x)=$\left\{\begin{array}{l}{{x}^{2}-2x-1,-1≤x≤3}\\{2,x>3或x<-1}\end{array}\right.$,再对选项一一加以判断,即可得到答案.
解答 解:∵函数f(x)=x2-2x-1,p=2,
∴f2(x)=$\left\{\begin{array}{l}{{x}^{2}-2x-1,-1≤x≤3}\\{2,x>3或x<-1}\end{array}\right.$,
∴A.fp[f(0)]=f2(-1)=2,f[fp(0)]=f(-1)=1+2-1=2,故A成立;
B.fp[f(1)]=f2(-2)=2,f[fp(1)]=f(-2)=4+4-1=7,故B不成立;
C.f[f(2)]=f(-1)=2,fp[fp(2)]=f2(-1)=2,故C成立;
D.f[f(3)]=f(2)=-1,fp[fp(3)]=f2(2)=-1,故D成立.
故选:B.
点评 本题考查新定义的理解和运用,考查分段函数的运用:求函数值,属于中档题.
练习册系列答案
相关题目
19.已知函数f(x)=asinx+bcosx(a,b为常数,a≠0)在x=$\frac{π}{4}$处取得最小值,则函数$g(x)=f({\frac{3π}{4}-x})$是( )
A. | 偶函数且它的图象关于点(π,0)对称 | |
B. | 偶函数且它的图象关于点$({\frac{3π}{2},0})$对称 | |
C. | 奇函数且它的图象关于点$({\frac{3π}{2},0})$对称 | |
D. | 奇函数且它的图象关于点(π,0)对称 |
17.已知实数x,y满足有不等式组$\left\{\begin{array}{l}{y≥x}\\{x+y≤2}\\{x≥a}\end{array}\right.$,且z=2x+y的最大值是最小值的2倍,则实数a的值是( )
A. | 2 | B. | $\frac{1}{2}$ | C. | $\frac{2}{5}$ | D. | $\frac{4}{3}$ |
14.要得到函数y=cosx的图象,只需将函数$y=sin(2x+\frac{π}{3})$的图象上所有的点的( )
A. | 横坐标伸长到原来的2倍(纵坐标不变),再向左平移$\frac{π}{6}$个单位长度 | |
B. | 横坐标伸长到原来的2倍(纵坐标不变),再向右平移$\frac{π}{3}$个单位长度 | |
C. | 横坐标缩短到原来的$\frac{1}{2}$倍(纵坐标不变),再向左平移$\frac{π}{6}$个单位长度 | |
D. | 横坐标缩短到原来的$\frac{1}{2}$倍(纵坐标不变),再向右平移$\frac{π}{3}$个单位长度 |