题目内容
(本题满分13分)
某俱乐部举行迎圣诞活动,每位会员交50元活动费,可享受20元的消费,并参加一次游戏:掷两颗正方体骰子,点数之和为12点获一等奖,奖价值为a元的奖品;点数之和为11或10点获二等奖,奖价值为100元的奖品;点数之和为9或8点获三等奖,奖价值为30元的奖品;点数之和小于8点的不得奖。求:
(1)同行的两位会员中一人获一等奖、一人获二等奖的概率;
(2)如该俱乐部在游戏环节不亏也不赢利,求a的值。
(1)P(A)=; (2)一等奖可设价值为310 元的奖品。
解析试题分析:(Ⅰ)设掷两颗正方体骰子所得的点数记为(x,y),其中1≤x,y≤6,则获
一等奖只有(6,6)一种可能,获二等奖共有(6,5)、(5,6)、(4,6)、(6,4)、(5,5)共5种可能,由此能求出同行的三位会员一人获一等奖、两人获二等奖的概率.
(Ⅱ)设俱乐部在游戏环节收益为ξ元,则ξ的可能取值为30-a,-70,0,30,分别求
出P(ξ=30-a),P(ξ=-70),P(ξ=0),P(ξ=30)的值,由此能求出ξ的分布列和
Eξ.
解:(1)设掷两颗正方体骰子所得的点数记为(x,y),其中,
则获一等奖只有(6,6)一种可能,其概率为:; …………2分
获二等奖共有(6,5)、(5,6)、(4,6)、(6,4)、(5,5)共5种可能,其概率为:;
…………5分
设事件A表示“同行的两位会员中一人获一等奖、一人获二等奖”,则有:
P(A)=; …………6分
(2)设俱乐部在游戏环节收益为ξ元,则ξ的可能取值为,,0,,……7分
其分布列为:ξ 30-a -70 0 30 p
则:Eξ=; …………11分
由Eξ=0得:a=310,即一等奖可设价值为310 元的奖品。 …………13分
考点:本试题主要考查了离散型随机变量的分布列和数学期望.
点评:解决该试题的关键是解题时要认真审题,理解古典概型的特征:试验结果的有限性和每一个试验结果出现的等可能性,体现了化归的重要思想.
公安部发布酒后驾驶处罚的新规定(一次性扣罚12分)已于2011年4月1日起正式施行.酒后违法驾驶机动车的行为分成两个档次:“酒后驾车”和“醉酒驾车”,其检测标准是驾驶人员血液中的酒精含量(简称血酒含量,单位是毫克/100毫升),当时,为酒后驾车;当时,为醉酒驾车.某市公安局交通管理部门在某路段的一次拦查行动中,依法检查了200辆机动车驾驶员的血酒含量(如下表).
依据上述材料回答下列问题:
(Ⅰ)分别写出酒后违法驾车发生的频率和酒后违法驾车中醉酒驾车的频率;
(Ⅱ)从酒后违法驾车的司机中,抽取2人,请一一列举出所有的抽取结果,并求取到的2人中含有醉酒驾车的概率. (酒后驾车的人用大写字母如表示,醉酒驾车的人用小写字母如表示)
血酒含量 | (0,20) | [20,40) | [40,60) | [60,80) | [80,100) | [100,120] |
人数 | 194 | 1 | 2 | 1 | 1 | 1 |