题目内容
【题目】已知函数,其中a为非零常数.
讨论的极值点个数,并说明理由;
若,证明:在区间内有且仅有1个零点;设为的极值点,为的零点且,求证:.
【答案】(1)见解析;(2)(i)证明见解析;(ii)证明见解析.
【解析】
先对函数求导,然后结合导数与单调性的关系,对a进行分类讨论即可求解函数的单调性,进而可确定极值,
转化为证明只有一个零点,结合函数与导数知识可证;
由题意可得,,代入可得,,结合函数的性质可证.
解:解:由已知,的定义域为,
,
①当时,,从而,
所以在内单调递减,无极值点;
②当时,令,
则由于在上单调递减,,,
所以存在唯一的,使得,
所以当时,,即;当时,,即,
所以当时,在上有且仅有一个极值点.
综上所述,当时,函数无极值点;当时,函数只有一个极值点;
证明:由知.
令,由得,
所以在内有唯一解,从而在内有唯一解,
不妨设为,则在上单调递增,在上单调递减,
所以是的唯一极值点.
令,则当时,,
故在内单调递减,
从而当时,,所以.
从而当时,,且
又因为,故在内有唯一的零点.
由题意,即,
从而,即.
因为当时,,又,
故,即,
两边取对数,得,
于是,整理得.
【题目】截至2019年,由新华社《瞭望东方周刊》与瞭望智库共同主办的"中国最具幸福感城市"调查推选活动已连续成功举办12年,累计推选出60余座幸福城市,全国约9亿多人次参与调查,使"城市幸福感"概念深入人心.为了便于对某城市的"城市幸福感"指数进行研究,现从该市抽取若干人进行调查,绘制成如下不完整的2×2列联表(数据单位:人).
男 | 女 | 总计 | |
非常幸福 | 11 | 15 | |
比较幸福 | 9 | ||
总计 | 30 |
(1)将列联表补充完整,并据此判断是否有90%的把握认为城市幸福感指数与性别有关;
(2)若感觉"非常幸福"记2分,"比较幸福"记1分,从上表男性中随机抽取3人,记3人得分之和为,求的分布列,并根据分布列求的概率
附:,其中.
) | 0. 10 | 0. 05 | 0. 010 | 0.001 |
2.706 | 3.841 | 6. 635 | 10. 828 |