题目内容
【题目】已知关于x的不等式ax2﹣x+b≥0的解集为[﹣2,1],则关于x的不等式bx2﹣x+a≤0的解集为( )
A.[﹣1,2]
B.[﹣1,]
C.[﹣ , 1]
D.[﹣1,﹣]
【答案】C
【解析】解:∵关于x的不等式ax2﹣x+b≥0的解集为[﹣2,1],
∴﹣2,1是关于x的方程ax2﹣x+b=0的两个根,
∴ , 解得a=﹣1,b=2,
∴关于x的不等式bx2﹣x+a≤0即2x2﹣x﹣1≤0,
解方程2x2﹣x﹣1=0,得x1=﹣ , x2=1,
∴关于x的不等式bx2﹣x+a≤0的解集为{x|﹣},即[﹣ , 1].
故选:C.
【考点精析】解答此题的关键在于理解解一元二次不等式的相关知识,掌握求一元二次不等式解集的步骤:一化:化二次项前的系数为正数;二判:判断对应方程的根;三求:求对应方程的根;四画:画出对应函数的图象;五解集:根据图象写出不等式的解集;规律:当二次项系数为正时,小于取中间,大于取两边.
练习册系列答案
相关题目
【题目】某高校在2012年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组,得到的频率分布表如图所示.
成绩分组 | 频数 | 频率 |
(160,165] | 5 | 0.05 |
(165,170] | ① | 0.35 |
(170,175] | 30 | ② |
(175,180] | 20 | 0.20 |
(180,185] | 10 | 0.10 |
合计 | 100 | 1 |
(1)请先求出频率分布表中①、②位置相应的数据,再画出频率分布直方图;
(2)为了能选拔出最优秀的学生,该高校决定在笔试成绩高的第3、4、5组中用分层抽样抽取6名学生进入第二轮面试,求第3、4、5组每组各抽取多少名学生进入第二轮面试?
(3)在(2)的前提下,学校决定在6名学生中随机抽取2名学生接受A考官的面试,求第四组至少有一名学生被考官A面试的概率?