题目内容

【题目】已知函数y=f(x)在R上为奇函数,当x>0时,f(x)=3x2﹣9,则f(﹣2)=

【答案】﹣3
【解析】解:由题意:函数y=f(x)在R上为奇函数,可得:f(0)=0,f(﹣x)=﹣f(x).
当x>0时,f(x)=3x2﹣9,
当x<0时,则﹣x>0,f(﹣x)=3x2﹣9,
∵f(﹣x)=﹣f(x),
∴f(x)=﹣3x2+9,
故得f(x)在R上解析式为:
∵﹣2<0,
∴f(﹣2)=﹣3(﹣2)2+9=﹣3.
所以答案是:﹣3.
【考点精析】本题主要考查了函数奇偶性的性质的相关知识点,需要掌握在公共定义域内,偶函数的加减乘除仍为偶函数;奇函数的加减仍为奇函数;奇数个奇函数的乘除认为奇函数;偶数个奇函数的乘除为偶函数;一奇一偶的乘积是奇函数;复合函数的奇偶性:一个为偶就为偶,两个为奇才为奇才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网