题目内容
20.根据下列要求的精确度,求2.036的近似值.(1)精确到0.1;
(2)精确到0.001.
分析 根据2.036 =(2+0.03)6,按照二项式定理展开,结合精度求得它的值.
解答 解:(1)精确到0.1时,2.036=(2+0.03)6=${C}_{6}^{0}$×26+${C}_{6}^{1}$×25×0.03+…+${C}_{6}^{6}$×0.036
≈${C}_{6}^{0}$•26+${C}_{6}^{1}$•25×0.03+${C}_{6}^{2}$×24×0.032=64+5.76+0.216≈71.0.
即 2.036≈71.0.
(1)精确到0.01时,2.036=(2+0.03)6=${C}_{6}^{0}$×26+${C}_{6}^{1}$×25×0.03+…+${C}_{6}^{6}$×0.036
≈${C}_{6}^{0}$•26+${C}_{6}^{1}$•25×0.03+${C}_{6}^{2}$×24×0.032+${C}_{6}^{3}$×23×0.03=64+5.76+0.216+0.00432≈70.98.
即 2.036≈70.98.
点评 本题主要考查二项式定理的应用,精确度的定义,属于基础题.
练习册系列答案
相关题目
10.已知ab>0,函数f(x)=x3-2ax2-bx在x=1处的切线斜率为1,则$\frac{1}{a}$+$\frac{1}{b}$的取值范围是( )
A. | [$\frac{9}{2}$,+∞) | B. | (-∞,$\frac{9}{2}$] | C. | [$\frac{1}{2}$,+∞) | D. | (-∞,-$\frac{1}{2}$] |