题目内容
15.求f(x)=x2+$\frac{5}{\sqrt{{x}^{2}+4}}$的值域.分析 利用换元法令$\sqrt{{x}^{2}+4}$=t(t≥2),从而可得f(x)=x2+$\frac{5}{\sqrt{{x}^{2}+4}}$=t2-4+$\frac{5}{t}$,再利用导数确定函数的单调性,从而求值域.
解答 解:令$\sqrt{{x}^{2}+4}$=t(t≥2),则x2=t2-4,
则f(x)=x2+$\frac{5}{\sqrt{{x}^{2}+4}}$=t2-4+$\frac{5}{t}$,
令g(t)=t2-4+$\frac{5}{t}$,
g′(t)=2t-$\frac{5}{{t}^{2}}$=$\frac{2{t}^{3}-5}{{t}^{2}}$>0,
故g(t)=t2-4+$\frac{5}{t}$在[2,+∞)上是增函数,
故g(t)≥g(2)=$\frac{5}{2}$;
故f(x)=x2+$\frac{5}{\sqrt{{x}^{2}+4}}$的值域为[$\frac{5}{2}$,+∞).
点评 本题考查了导数的综合应用及换元法求函数的值域的应用,属于中档题.
练习册系列答案
相关题目
10.已知x,y∈R+,且x+2y=$\sqrt{3}$,则$\frac{xy+1}{{x}^{2}+4{y}^{2}}$的最大值为( )
A. | $\frac{11}{12}$ | B. | $\frac{11}{6}$ | C. | $\sqrt{3}$ | D. | 2$\sqrt{3}$ |
4.已知实数x,y满足$\left\{\begin{array}{l}{x-2y+1≥0}\\{x<2}\\{x+y-1≥0}\end{array}\right.$,则z=2x-2y-1的取值范围是( )
A. | [$\frac{5}{3}$,5] | B. | [-$\frac{5}{3}$,5) | C. | [$\frac{5}{3}$,5) | D. | [0,5] |
5.已知函数f(x)=log${\;}_{\frac{1}{2}}$(x2-ax+3)在[1,+∞)上单调递减,则a的取值范围是( )
A. | (-∞,4) | B. | (-∞,2] | C. | [2,4) | D. | (4,+∞) |