题目内容
【题目】已知曲线y=Asin(ωx+φ)(A>0,ω>0)上的一个最高点的坐标为(,),由此点到相邻最低点间的曲线与x轴交于点(π,0),φ∈(﹣,).
(1)求这条曲线的函数解析式;
(2)写出函数的单调区间.
【答案】(1)y=sin(x+);(2)[4kπ+,4kπ+],k∈Z.
【解析】解:(1)由题意可得A=,=﹣,求得ω=.
再根据最高点的坐标为(,),可得sin(×+φ)=,即sin(×+φ)=1 ①.
再根据由此最高点到相邻最低点间的曲线与x轴交于点(π,0),可得得sin(×+φ)=0,即sin(+φ)=0 ②,
由①②求得φ=,故曲线的解析式为y=sin(x+).
(2)对于函数y=sin(x+),令2kπ﹣≤+≤2kπ+,求得4kπ﹣≤x≤4kπ+,
可得函数的增区间为[4kπ﹣,4kπ+],k∈Z.
令2kπ+≤+≤2kπ+,求得4kπ+≤x≤4kπ+,
可得函数的减区间为[4kπ+,4kπ+],k∈Z.
练习册系列答案
相关题目