题目内容
【题目】已知一圆的圆心在直线上,且该圆经过和两点.
(1)求圆的标准方程;
(2)若斜率为的直线与圆相交于,两点,试求面积的最大值和此时直线的方程.
【答案】(1)(2)最大值2,或.
【解析】
(1)方法一、求得的垂直平分线方程与已知直线联立,求得圆心,可得半径,即可得到所求圆的方程;
方法二、设圆的方程为,将点代入可得,,的方程组,解方程可得圆的方程;
(2)直线与圆相交,设直线的方程为,求得圆心到直线的距离和弦长,由三角形的面积公式,化为关于的二次函数,求得最值,进而求得,可得所求直线方程;
(1)方法一:和两点的中垂线方程为:,
圆心必在弦的中垂线上,联立得,
半径,所以圆的标准方程为:.
方法二:设圆的标准方程为:,
由题得:,解得:
所以圆的标准方程为:.
(2)设直线的方程为,圆心到直线的距离为,
∴,且,,
面积,
当,时,取得最大值2
此时,解得:或
所以,直线的方程为:或.
【题目】孝感车天地关于某品牌汽车的使用年限(年)和所支出的维修费用(千元)由如表的统计资料:
2 | 3 | 4 | 5 | 6 | |
2.1 | 3.4 | 5.9 | 6.6 | 7.0 |
(1)画出散点图并判断使用年限与所支出的维修费用是否线性相关;如果线性相关,求回归直线方程;
(2)若使用超过8年,维修费用超过1.5万元时,车主将处理掉该车,估计第10年年底时,车主是否会处理掉该车?
()
【题目】已知某运动员每次投篮命中的概率为80%.现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4,5,6,7,8表示命中,9,0表示未命中;再以每三个随机数为一组,代表三次投篮的结果.经随机模拟产生了如下20组随机数:
907 | 966 | 191 | 925 | 271 | 932 | 812 | 458 | 569 | 683 |
431 | 257 | 393 | 027 | 556 | 488 | 730 | 113 | 537 | 989 |
据此估计,该运动员三次投篮均命中的概率为( )
A.B.C.D.
【题目】某学生对某小区30位居民的饮食习惯进行了一次调查,并用如图所示的茎叶图表示他们的饮食指数(说明:图中饮食指数低于70的人,饮食以蔬菜为主;饮食指数高于70的,饮食以肉类为主).
(1)根据茎叶图,说明这30位居民中50岁以上的人的饮食习惯;
(2)根据以上数据完成如下2×2列联表;
主食蔬菜 | 主食肉类 | 总计 | |
50岁以下 | |||
50岁以上 | |||
总计 |
(3)能否有99%的把握认为居民的饮食习惯与年龄有关?
独立性检验的临界值表
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 6.635 | 7.879 | 10.828 |
参考公式:,其中.