题目内容
【题目】设锐角三角形ABC的内角A,B,C的对边分别为a,b,c,且a=2bsin A. (Ⅰ)求角B的大小;
(Ⅱ)若a= ,c=5,求△ABC的面积及b.
【答案】解:(Ⅰ)因为a=2bsin A,由正弦定理得sin A=2sin Bsin A, 由于sin A≠0,故有sin B= ,
又因为B是锐角,所以B=30°.
(Ⅱ)依题意得:S△ABC= acsin 30°= ×3 ×5× = ,
所以由余弦定理b2=a2+c2﹣2accos B,可得:
b2=(3 )2+52﹣2×3 ×5×cos 30°=27+25﹣45=7,
所以b=
【解析】(Ⅰ)由已知及正弦定理得sin A=2sin Bsin A,由于sin A≠0,可求sinB= ,结合B是锐角,可求B.(Ⅱ)依题意利用三角形面积公式及余弦定理即可计算得解.
【考点精析】本题主要考查了正弦定理的定义和余弦定理的定义的相关知识点,需要掌握正弦定理:;余弦定理:;;才能正确解答此题.
练习册系列答案
相关题目
【题目】某大学餐饮中心为了了解新生的饮食习惯,利用简单随机抽样的方法在全校一年级学生中进行了抽样调查,调查结果如表所示:
喜欢甜品 | 不喜欢甜品 | 合计 | |
南方学生 | 60 | 20 | 80 |
北方学生 | 10 | 10 | 20 |
合计 | 70 | 30 | 100 |
(1)根据表中数据,问是否有95%的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”;
(2)根据(1)的结论,你能否提出更好的调查方法来了解该校大学新生的饮食习惯,说明理由.