题目内容
【题目】定义在 上的单调递减函数 ,若 的导函数存在且满足 ,则下列不等式成立的是( )
A.
B.
C.
D.
【答案】A
【解析】∵ 为 上的单调递减函数,∴ ,又∵ ,
∴ >0 <0[ ]′<0,
设h(x)= ,则h(x)= 为(0,+∞)上的单调递减函数,
∵ >x>0,f′(x)<0,∴f(x)<0.
∵h(x)= 为 上的单调递减函数,
∴ > >02f(3)﹣3f(2)>02f(3)>3f(2),故A正确;由2f(3)>3f(2)>3f(4),可排除C;同理可判断3f(4)>4f(3),排除B;1f(2)>2f(1),排除D;所以答案是:A.
【考点精析】认真审题,首先需要了解利用导数研究函数的单调性(一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减).
练习册系列答案
相关题目
【题目】某学校为了了解该校学生对于某项运动的爱好是否与性别有关,通过随机抽查110名学生,得到如下2×2的列联表:
喜欢该项运动 | 不喜欢该项运动 | 总计 | |
男 | 40 | 20 | 60 |
女 | 20 | 30 | 50 |
总计 | 60 | 50 | 110 |
由公式K2= ,算得K2≈7.61
附表:
p(K2≥k0) | 0.025 | 0.01 | 0.005 |
k0 | 5.024 | 6.635 | 7.879 |
参照附表,以下结论正确是( )
A.有99.5%以上的把握认为“爱好该项运动与性别有关”
B.有99.5%以上的把握认为“爱好该项运动与性别无关”
C.有99%以上的把握认为“爱好该项运动与性别有关”
D.有99%以上的把握认为“爱好该项运动与性别无关”