题目内容
【题目】已知函数f(x)=|3x﹣1|﹣2|x|+2.
(1)解不等式:f(x)<10;
(2)若对任意的实数x,f(x)﹣|x|≤a恒成立,求实数a的取值范围.
【答案】
(1)解:x<0时,不等式化为﹣3x+1+2x+2<10,解得x>﹣7,∴﹣7<x<0;
0 时,不等式化为﹣3x+1﹣2x+2<10,解得x>﹣
,∴0
;
x> 时,不等式化为3x﹣1﹣2x+2<10,解得x<9,∴
;
综上所述,不等式的解集为(﹣7,9);
(2)解:对任意的实数x,f(x)﹣|x|≤a恒成立,即|3x﹣1|﹣|3x|≤a﹣2,
∵|3x﹣1|﹣|3x|≤|3x﹣1﹣3x|=1,
∴a﹣2≥1,∴a≥3.
【解析】(1)分类讨论,解不等式:f(x)<10;(2)对任意的实数x,f(x)﹣|x|≤a恒成立,即|3x﹣1|﹣|3x|≤a﹣2,利用|3x﹣1|﹣|3x|≤|3x﹣1﹣3x|=1,即可求实数a的取值范围.
【考点精析】解答此题的关键在于理解绝对值不等式的解法的相关知识,掌握含绝对值不等式的解法:定义法、平方法、同解变形法,其同解定理有;规律:关键是去掉绝对值的符号.

【题目】为了政府对过热的房地产市场进行调控决策,统计部门对城市人和农村人进行了买房心理预测调研,用简单随机抽样的方法抽取了110人进行统计,得到如下列联表:
买房 | 不买房 | 纠结 | |
城市人 | 5 | 15 | |
农村人 | 20 | 10 |
已知样本中城市人数与农村人数之比是3:8.
(Ⅰ)分别求样本中城市人中的不买房人数和农村人中的纠结人数;
(Ⅱ)从参与调研的城市人中用分层抽样方法抽取6人,进一步统计城市人的某项收入指标,假设一个买房人的指标算作3,一个纠结人的指标算作2,一个不买房人的指标算作1,现在从这6人中再随机选取3人,令X=再抽取3人指标之和,求X的分布列和数学期望.