题目内容

【题目】如果函数f(x)=ax+b﹣1(a>0且a≠1)的图象经过第一、二、四象限,不经过第三象限,那么一定有( )
A.0<a<1且b>0
B.0<a<1且0<b<1
C.a>1且b<0
D.a>1且b>0

【答案】B
【解析】解:因为函数f(x)=ax+b﹣1(a>0且a≠1)的图象经过第一、二、四象限,不经过第三象限,
则根据指数函数的图象可知,0<a<1,当x=0时,0<y<1,
即0<1+b﹣1<1,解得0<b<1.
故选B.
【考点精析】解答此题的关键在于理解指数函数的图像与性质的相关知识,掌握a0=1, 即x=0时,y=1,图象都经过(0,1)点;ax=a,即x=1时,y等于底数a;在0<a<1时:x<0时,ax>1,x>0时,0<ax<1;在a>1时:x<0时,0<ax<1,x>0时,ax>1.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网