题目内容
11.若向量$\overrightarrow a=({1,0,z})$与向量$\overrightarrow b=({2,1,2})$的夹角的余弦值为$\frac{2}{3}$,则z=0,$|{\overrightarrow a-2\overrightarrow b}|$=$\sqrt{29}$.分析 由$cos<\overrightarrow{a},\overrightarrow{b}>$=$\frac{\overrightarrow{a}•\overrightarrow{b}}{|\overrightarrow{a}|•|\overrightarrow{b}|}$=$\frac{2}{3}$,能求出z,由此能求出|$\overrightarrow{a}-2\overrightarrow{b}$|.
解答 解:∵向量$\overrightarrow a=({1,0,z})$与向量$\overrightarrow b=({2,1,2})$的夹角的余弦值为$\frac{2}{3}$,
∴$cos<\overrightarrow{a},\overrightarrow{b}>$=$\frac{\overrightarrow{a}•\overrightarrow{b}}{|\overrightarrow{a}|•|\overrightarrow{b}|}$=$\frac{2+2z}{\sqrt{1+{z}^{2}}•\sqrt{9}}$=$\frac{2+2z}{3\sqrt{1+{z}^{2}}}$=$\frac{2}{3}$,
解得z=0,
∴$\overrightarrow{a}-2\overrightarrow{b}$=(1,0,0)-(4,2,4)=(-3,-2,-4),
|$\overrightarrow{a}-2\overrightarrow{b}$|=$\sqrt{9+4+16}$=$\sqrt{29}$.
故答案为:0,$\sqrt{29}$.
点评 本题考查实数值的求法,考查向量的模的求法,是基础题,解题时要认真审题,注意向量夹角余弦值的坐标运算公式的合理运用.
| A. | y=lnx | B. | y=x3 | C. | y=3x | D. | y=sinx |