题目内容
19.已知等腰直角三角形的直角边的长为2,将该三角形绕其斜边所在的直线旋转一周而形成的曲面所围成的几何体的表面积为4$\sqrt{2}$π.分析 画出满足条件的几何体,根据圆锥的侧面积公式直接计算即可得到答案
解答 解:如图为等腰直角三角形旋转而成的旋转体.
这是两个底面半径为$\sqrt{2}$,母线长2的圆锥,
故S=2πrl=2π×$\frac{\sqrt{2}}{2}$×2=4$\sqrt{2}$π.
故答案为:4$\sqrt{2}$π.
点评 本题考查圆锥的侧面积公式,考查空间想象能力以及计算能力.是基础题.
练习册系列答案
相关题目
7.已知f(x+1)=x2,则f(3)=( )
A. | 9 | B. | 16 | C. | 4 | D. | -4 |
14.函数$y=\frac{{\sqrt{{x^2}-1}}}{x-1}$的定义域是( )
A. | {x|-1≤x<1} | B. | {x|x≤-1或x>1} | C. | {x|-1≤x≤1} | D. | {x|x≤-1或x≥1} |