题目内容

16.已知向量$\overrightarrow{a}$=(1,sinθ),$\overrightarrow{b}$=(2,1).
(1)当θ=$\frac{π}{6}$时,求向量2$\overrightarrow{a}$+$\overrightarrow{b}$的坐标;
(2)若$\overrightarrow{a}$∥$\overrightarrow{b}$,且θ∈(0,$\frac{π}{2}$),求sin(θ+$\frac{π}{4}$)的值.

分析 (1)当$θ=\frac{π}{6}$时可得$\overrightarrow{a}$=$(1,\frac{1}{2})$,由向量的运算可得;
(2)由向量平行可得$sinθ=\frac{1}{2}$,由同角三角函数基本关系可得$cosθ=\frac{{\sqrt{3}}}{2}$,代入两角和的正弦公式可得.

解答 解:(1)∵$θ=\frac{π}{6}$,∴$\overrightarrow{a}$=$(1,\frac{1}{2})$,
∴向量2$\overrightarrow{a}$+$\overrightarrow{b}$=$2(1,\frac{1}{2})+(2,1)=(4,2)$;
(2)∵$\overrightarrow{a}$∥$\overrightarrow{b}$,∴$sinθ=\frac{1}{2}$,
又∵$θ∈(0,\frac{π}{2})$,∴$cosθ=\frac{{\sqrt{3}}}{2}$,
∴$sin(θ+\frac{π}{4})=sinθcos\frac{π}{4}+cosθsin\frac{π}{4}=\frac{{\sqrt{2}+\sqrt{6}}}{4}$

点评 本题考查两角和与差的三角函数公式,涉及向量的运算和同角三角函数基本关系,属基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网