题目内容
【题目】抛物线C:y2=2x的准线方程是 , 经过点P(4,1)的直线l与抛物线C相交于A,B两点,且点P恰为AB的中点,F为抛物线的焦点,则 = .
【答案】x=﹣ ;9
【解析】解:抛物线C:y2=2x的准线方程是x=﹣ ,它的焦点F( ,0).
过A作AM⊥直线l,BN⊥直线l,PK⊥直线l,M、N、K分别为垂足,
则由抛物线的定义可得|AM|+|BN|=|AF|+|BF|.
再根据P为线段AB的中点, (|AM|+|BN|)=|PK|= ,∴|AF|+|BF|=9,
故答案为: .
根据抛物线的标准方程求得准线方程和焦点坐标,利用抛物线的定义把|AF|+|BF|转化为|AM|+|BN|,再转化为2|PK|,从而得出结论.
练习册系列答案
相关题目