题目内容
【题目】设向量 =( sinx,sinx), =(cosx,sinx),x∈[0, ]
(1)若| |=| |,求x的值;
(2)设函数f(x)= ,求f(x)的值域.
【答案】
(1)解:由题意,可得 , .
∵ ,∴4sin2x=1,
又∵ ,可得 (舍负),∴
(2)解: = = ,
∵ ,得
∴当 ,即 时,函数f(x)有最大值 ,
当 ,即x=0时,函数f(x)有最小值f(x)min=0.
综上所述,函数f(x)的值域为
【解析】(1)根据向量模的公式算出 、 ,由 建立关于x的等式,结合 即可解出实数x的值;(2)根据向量数量积公式和三角恒等变换公式,化简得 = ,再由 利用正弦函数的图象与性质加以计算,即可得出函数f(x)的值域.
【考点精析】利用两角和与差的正弦公式对题目进行判断即可得到答案,需要熟知两角和与差的正弦公式:.
练习册系列答案
相关题目