题目内容

【题目】如图,曲线由曲线和曲线组成,其中点为曲线所在圆锥曲线的焦点,点为曲线所在圆锥曲线的焦点.

(1)若,求曲线的方程;

(2)如图,作直线平行于曲线的渐近线,交曲线于点,求证:弦的中点必在曲线的另一条渐近线上;

3)对于(1)中的曲线,若直线过点交曲线于点,求的面积的最大值.

【答案】1;(2)证明见解析;(3

【解析】

1)本题曲线方程的求法实质为待定系数法,即根据条件列出两个方程组,解出对应参数即可(2)本题证明方法为以算代证,即先求出弦的中点坐标,再代入双曲线渐近线方程进行验证.先根据条件设出直线方程,与椭圆方程联立方程组,根据韦达定理及中点坐标公式求出弦中点横坐标(或纵坐标),代入直线方程可得弦中点纵坐标(或横坐标),再代入双曲线另一渐近线方程进行验证.

3)三角形的面积可转化为等于两个三角形面积之差,即,所以只需根据直线方程(设直线斜率)与椭圆方程,利用韦达定理表示出,并根据判别式大于零列出直线斜率取值范围,最后根据基本不等式求最值.

1

则曲线的方程为

2)曲线的渐近线为 ,如图,设直线

又由数形结合知

设点,则

即点 在直线

3)由(1)知,曲线,点

设直线的方程为

由韦达定理:

,

,当且仅当时等号成立

时,

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网