题目内容

【题目】已知正四棱柱ABCD﹣A1B1C1D1(底面是正方形,侧棱垂直于底面)的8个顶点都在球O的表面上,AB=1,AA1′=2,则球O的半径R=;若E,F是棱AA1和DD1的中点,则直线EF被球O截得的线段长为

【答案】6π;
【解析】解:正四棱柱对角线为球直径,A1C2=1+1+4,
所以R= ,所以球的表面积为6π;
由已知所求EF是正四棱柱在球中其中一个截面的直径上的一部分,Q为EF的中点,
d= ,R= ,所以PQ= =
所以2PQ=
所以答案是:6π;

【考点精析】认真审题,首先需要了解棱柱的结构特征(两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形).

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网