题目内容
已知x>0,y>0,求证:.
见解析
【解析】原不等式等价于(x+y)2≥4xy,即(x-y)2≥0,显然成立.故原不等式得证.
已知平面向量a=(1,x),b=(2x+3,-x),x∈R.
(1)若a⊥b,求x的值;
(2)若a∥b,求|a-b|的值.
在△ABC中,=c,=b.若点D满足=2,则=________.(用b、c表示)
某种产品按下列三种方案两次提价.方案甲:第一次提价p%,第二次提价q%;方案乙:第一次提价q%,第二次提价p%;方案丙:第一次提价%,第二次提价%.其中p>q>0,上述三种方案中提价最多的是________.
某造纸厂拟建一座平面图形为矩形且面积为162m2的三级污水处理池,池的深度一定(平面图如图所示),如果池四周围墙建造单价为400元/m2,中间两道隔墙建造单价为248元/m2,池底建造单价为80元/m2,水池所有墙的厚度忽略不计.
(1)试设计污水处理池的长和宽,使总造价最低,并求出最低总造价;
(2)若由于地形限制,该池的长和宽都不能超过16m,试设计污水池的长和宽,使总造价最低,并求出最低总造价.
若x>0,则x+的最小值为________.
设变量x、y满足则2x+3y的最大值是________.
解关于x的不等式(1-ax)2<1.
如图,四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,点E在线段AD上,且CE∥AB.
(1)求证:CE⊥平面PAD;
(2)若PA=AB=1,AD=3,CD=,∠CDA=45°,求四棱锥P-ABCD的体积.