题目内容
某造纸厂拟建一座平面图形为矩形且面积为162m2的三级污水处理池,池的深度一定(平面图如图所示),如果池四周围墙建造单价为400元/m2,中间两道隔墙建造单价为248元/m2,池底建造单价为80元/m2,水池所有墙的厚度忽略不计.
(1)试设计污水处理池的长和宽,使总造价最低,并求出最低总造价;
(2)若由于地形限制,该池的长和宽都不能超过16m,试设计污水池的长和宽,使总造价最低,并求出最低总造价.
(1)当长为16.2m,宽为10m时总造价最低,最低总造价为38880元.(2)当长为16m,宽为10m时,总造价最低,为38882元.
【解析】(1)设污水处理池的宽为xm,则长为m
总造价为f(x)=400×+248×2x+80×162=1296x++12960=1296+12960≥1296×2+12960=38880元.当且仅当x=(x>0),即x=10时取等号.∴当长为16.2m,宽为10m时总造价最低,最低总造价为38880元.
(2)由限制条件知∴10≤x≤16.设g(x)+x+,由函数性质易知g(x)在上是增函数,∴当x=10时(此时=16),g(x)有最小值,即f(x)有最小值1296×+12960=38882(元).∴当长为16m,宽为10m时,总造价最低,为38882元.
练习册系列答案
相关题目