题目内容

【题目】对于函数f(x),若存在区间A=[m,n],使得{y|y=f(x),x∈A}=A,则称函数f(x)为“可等域函数”,区间A为函数f(x)的一个“可等域区间”.给出下列四个函数: ①f(x)=sin x;②f(x)=2x2﹣1;③f(x)=|1﹣2x|
其中存在“可等域区间”的“可等域函数”为(
A.①
B.②
C.①②
D.①②③

【答案】D
【解析】解:①f(x)=sin x的可等域区间有[0,1];②f(x)=2x2﹣1的可等域区间有[﹣1,1];③f(x)=|1﹣2x|的可等域区间有[0,1].

故选:D.

【考点精析】认真审题,首先需要了解函数的定义域及其求法(求函数的定义域时,一般遵循以下原则:①是整式时,定义域是全体实数;②是分式函数时,定义域是使分母不为零的一切实数;③是偶次根式时,定义域是使被开方式为非负值时的实数的集合;④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1,零(负)指数幂的底数不能为零),还要掌握函数的值域(求函数值域的方法和求函数最值的常用方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的)的相关知识才是答题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网