题目内容
19.四面体ABCD的对边长分别相等,AB=CD=a,AC=BD=b,AD=BC=c,求这个四面体外接球的直径.分析 构造长方体,使得面上的对角线长分别为a,b,c,则长方体的对角线长等于四面体外接球的直径.
解答 解:∵四面体ABCD的对边长分别相等,AB=CD=a,AC=BD=b,AD=BC=c,
∴构造长方体,使得面上的对角线长分别为a,b,c,
则长方体的对角线长等于四面体外接球的直径.
设长方体的棱长分别为x,y,z,则x2+y2=a2,y2+z2=b2,x2+z2=c2,
∴四面体外接球的直径为$\sqrt{\frac{{a}^{2}+{b}^{2}+{c}^{2}}{2}}$.
点评 本题考查球内接多面体,考查学生的计算能力,构造长方体,利用长方体的对角线长等于四面体外接球的直径是关键.
练习册系列答案
相关题目
10.二元一次方程组$\left\{{\begin{array}{l}{{a_1}x+{b_1}y={c_1}}\\{{a_2}x+{b_2}y={c_2}}\end{array}}\right.$存在唯一解的必要非充分条件是( )
A. | 系数行列式D≠0 | |
B. | 比例式$\frac{a_1}{a_2}≠\frac{b_1}{b_2}$ | |
C. | 向量$({\begin{array}{l}{a_1}\\{{a_2}}\end{array}}),({\begin{array}{l}{b_1}\\{{b_2}}\end{array}})$不平行 | |
D. | 直线a1x+b1y=c1,a2x+b2y=c2不平行 |
4.2004年5月31日国家制定了新的酒驾醉驾标准,车辆驾驶人员血液酒精含量大于或等于20mg/100ml(0.2‰),小于80mg/100ml(0.8‰)为饮酒驾车;大于或等于80mg/100ml(0.8‰)为醉酒驾车.以下是血清里酒精含量与常人精神状态关联的五个阶段:
但血清中的酒精含量在饮用等量酒的情况下,是因人而异有所不同的.下面是某卫生机构在20~55岁的饮酒男性志愿者中,随机选取30人作为样本进行测试.在饮用了250ml(60%)60度纯粮白酒(相当于5瓶啤酒)恰好一小时,血清中酒精含量(最大值)统计数据:
以上数据为参考依据.
(1)试估计20~55岁的饮酒男性在饮用了250ml(60%)60度纯粮白酒(相当于5瓶啤酒)恰好一小时,血清中酒精含量0.8%及以上的概率是多少?
(2)在午夜12点,酒吧营业两小时,客人餐饮大约一小时.有5名20~55岁的男性(每人饮用相当于60度纯粮白酒饮酒量250ml左右)从酒吧走出并驾车离开(已知其中4人血清酒精含量0.8‰及以上,一人0.8‰以下),恰有两人途中被交警拦截检查,则这两人均是醉酒驾车的概率是多少?
血清酒精含量 | [0.2‰,0.4‰) | [0.4‰,0.8‰) | [0.8‰,1.2‰) | [1.2‰,1.6‰) | [1.6‰,+∞) |
常人精神状态 | 君子态(愉快) | 孔雀态(炫耀) | 狮子态(打架) | 猴子态(失控) | 狗熊态(昏睡) |
血清酒精含量 | [0.2,0.4‰‰) | [0.4‰,0.8‰) | [0.8‰,1.2‰) | [1.2‰,1.6‰) | [1.6‰,+∞) |
人数 | 1 | 2 | 12 | 13 | 2 |
(1)试估计20~55岁的饮酒男性在饮用了250ml(60%)60度纯粮白酒(相当于5瓶啤酒)恰好一小时,血清中酒精含量0.8%及以上的概率是多少?
(2)在午夜12点,酒吧营业两小时,客人餐饮大约一小时.有5名20~55岁的男性(每人饮用相当于60度纯粮白酒饮酒量250ml左右)从酒吧走出并驾车离开(已知其中4人血清酒精含量0.8‰及以上,一人0.8‰以下),恰有两人途中被交警拦截检查,则这两人均是醉酒驾车的概率是多少?