ÌâÄ¿ÄÚÈÝ
5£®ÒÑÖªÊýÁÐ{an}ÊǵȲîÊýÁУ¬ÊýÁÐ{bn}ÊǵȱÈÊýÁУ¬a1b1=3£¬ÇÒ¶ÔÈÎÒâµÄn¡ÊN+£¬¶¼ÓÐa1b1+a2b2+a3b3+¡+anbn=$\frac{£¨2n-1£©{3}^{n+1}+3}{4}$£®£¨¢ñ£©ÇóÊýÁÐ{anbn}µÄͨÏʽ£»
£¨¢ò£©ÈôÊýÁÐ{bn}µÄÊ×ÏîΪ3£¬¹«±ÈΪ3£¬Éècn=bn+£¨-1£©n-1¦Ë•2an+1£¬ÇÒ¶ÔÈÎÒâµÄn¡ÊN+£¬¶¼ÓÐcn+1£¾cn³ÉÁ¢£¬ÇóʵÊý¦ËµÄÈ¡Öµ·¶Î§£®
·ÖÎö £¨I£©ÀûÓõÝÍÆʽ¿ÉµÃanbn£»
£¨II£©ÊýÁÐ{bn}µÄÊ×ÏîΪ3£¬¹«±ÈΪ3£¬¿ÉµÃbn£®ÓÖanbn=n•3n£¨n¡ÊN*£©£®k¿ÉµÃan£¬¿ÉµÃcn=3n+£¨-1£©n-1¦Ë•2n+1£¬ÓÉÓÚ¶ÔÈÎÒâµÄn¡ÊN+£¬¶¼ÓÐcn+1£¾cn³ÉÁ¢£¬»¯¼òµÃ£¨-1£©n-1•¦Ë$£¼\frac{1}{3}•£¨\frac{3}{2}£©^{n}$£¬¶Ôn·ÖÀàÌÖÂÛ¼´¿ÉµÃ³ö£®
½â´ð ½â£º£¨¢ñ£©¡ß¶ÔÈÎÒâµÄn¡ÊN+£¬¶¼ÓÐa1b1+a2b2+a3b3+¡+anbn=$\frac{£¨2n-1£©{3}^{n+1}+3}{4}$£®
¡àµ±n¡Ý2ʱ£¬a1b1+a2b2+a3b3+¡+an-1bn-1=$\frac{£¨2n-3£©{3}^{n}+3}{4}$£®
Á½Ê½Ïà¼õ£¬µÃanbn=n•3n£¨n¡Ý2£©£¬
ÓÖµ±n=1ʱ£¬a1b1=3£¬ÊʺÏÉÏʽ£¬
´Ó¶øµÃanbn=n•3n£¨n¡ÊN*£©£®
£¨¢ò£©¡ßÊýÁÐ{bn}µÄÊ×ÏîΪ3£¬¹«±ÈΪ3£¬
¡à${b}_{n}={3}^{n}$£®
ÓÖanbn=n•3n£¨n¡ÊN*£©£®
Òò´Ëan=n£¬
¡àcn=bn+£¨-1£©n-1¦Ë•2an+1=3n+£¨-1£©n-1¦Ë•2n+1£¬
¡ß¶ÔÈÎÒâµÄn¡ÊN+£¬¶¼ÓÐcn+1£¾cn³ÉÁ¢£¬
¡à3n+1+£¨-1£©n•2n+2£¾3n+£¨-1£©n-1¦Ë•2n+1£¬
»¯¼òµÃ£¨-1£©n-1•¦Ë$£¼\frac{1}{3}•£¨\frac{3}{2}£©^{n}$£¬
µ±nΪÆæÊýʱ£¬¦Ë$£¼\frac{1}{3}•£¨\frac{3}{2}£©^{n}$ºã³ÉÁ¢£¬¡à$¦Ë£¾\frac{1}{3}•£¨\frac{3}{2}£©^{1}$£¬¼´$¦Ë£¼\frac{1}{2}$£¬
µ±nΪżÊýʱ£¬$¦Ë£¾£¨-\frac{1}{3}£©•£¨\frac{3}{2}£©^{n}$ºã³ÉÁ¢£¬
¡à$¦Ë£¾£¨-\frac{1}{3}£©•£¨\frac{3}{2}£©^{2}$=-$\frac{3}{4}$£¬¼´$¦Ë£¾-\frac{3}{4}$£¬
×ۺϿɵ㺦ˡÊ$£¨-\frac{3}{4}£¬\frac{1}{2}£©$£®
µãÆÀ ±¾Ì⿼²éÁ˵ÝÍÆʽµÄÓ¦ÓᢵȱÈÊýÁеÄͨÏʽ¡¢ÊýÁеĵ¥µ÷ÐÔ£¬¿¼²éÁ˱äÐÎÄÜÁ¦Óë·ÖÀàÌÖÂÛ˼Ïë·½·¨£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
A£® | $\frac{2¦Ð}{3}$ | B£® | $\frac{¦Ð}{3}$ | C£® | $\frac{5¦Ð}{6}$ | D£® | $\frac{¦Ð}{6}$ |