题目内容

14.设两直线l1:(3+m)x+4y=5-3m与l2:2x+(5+m)y=8,若l1∥l2,则m=-7,若l1⊥l2,则m=-$\frac{13}{3}$.

分析 由直线的平行和垂直关系分别可得m的方程,解方程验证可得.

解答 解:∵两直线l1:(3+m)x+4y=5-3m与l2:2x+(5+m)y=8,
∴若l1∥l2,则(3+m)(5+m)-4×2=0,
解得m=-1或m=-7,当m=-1时两直线重合应舍去,
∴m=-7
若l1⊥l2,则2(3+m)+4(5+m)=0,
解得m=-$\frac{13}{3}$
故答案为:-7;-$\frac{13}{3}$

点评 本题考查直线的一般式方程和平行垂直关系,属基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网