题目内容
13.已知数列{an}中,a1=3,a2=5,其前n项和为Sn,满足Sn+2+Sn=2Sn+1+2n+1(1)求数列{an}的通项公式.
(2)令bn=$\frac{{2}^{n-1}}{{a}_{n}•{a}_{n+1}}$,Tn是数列{bn}的前n项和,证明:对任意的m∈(0,$\frac{1}{6}$),均存在正整数n0,使得T${\;}_{{n}_{0}}$>m成立.
分析 (1)由题意知Sn-Sn-1=Sn-1-Sn-2+2n-1(n≥3),由此可得an=an-1+2n-1(n≥3),然后利用累加法求出数列
{an}的通项公式.
(2)把(1)中求出的通项公式代入bn=$\frac{{2}^{n-1}}{{a}_{n}•{a}_{n+1}}$,裂项相消后求出数列{bn}的前n项和Tn,由Tn>m求出满足
T${\;}_{{n}_{0}}$>m的正整数n0.
解答 (1)解:由题意知Sn+2+Sn=2Sn+1+2n+1,得
Sn-Sn-1=Sn-1-Sn-2+2n-1(n≥3),
即an=an-1+2n-1(n≥3),
∴an=(an-an-1)+(an-1-an-2)+…+(a3-a2)+a2
=2n-1+2n-2+…+22+5
=2n-1+2n-2+…+22+2+1+2
=2n+1,n≥3.
检验知n=1,2时,结论也成立,
故an=2n+1.
(2)证明:bn=$\frac{{2}^{n-1}}{{a}_{n}•{a}_{n+1}}$=$\frac{{2}^{n-1}}{({2}^{n}+1)({2}^{n+1}+1)}$=$\frac{1}{2}(\frac{1}{{2}^{n}+1}-\frac{1}{{2}^{n+1}-1})$,
故Tn=b1+b2+b3+…+bn=$\frac{1}{2}(\frac{1}{1+2}-\frac{1}{1+{2}^{2}}+\frac{1}{1+{2}^{2}}-\frac{1}{1+{2}^{3}}+…+\frac{1}{{2}^{n}+1}-\frac{1}{{2}^{n+1}-1})$
=$\frac{1}{2}(\frac{1}{3}-\frac{1}{{2}^{n+1}+1})<\frac{1}{6}$.
若Tn>m,其中m∈(0,$\frac{1}{6}$),则有$\frac{1}{2}$($\frac{1}{1+2}$-$\frac{1}{1+{2}^{n+1}}$)>m,
则2n+1>$\frac{3}{1-6m}$-1,
故n>$lo{g}_{2}(\frac{3}{1-6m}-1)-1$>0,
取n0=[$lo{g}_{2}(\frac{3}{1-6m}-1)-1$]+1
=[$lo{g}_{2}(\frac{3}{1-6m}-1)$](其中[x]表示不超过x的最大整数),
则当n>n0时,Tn>m.
点评 本题考查数列与不等式的综合运用,关键是注意合理地进行等价转化,综合性强,难度较大,是压轴题.
A. | (-∞,4) | B. | [0,4) | C. | (0,$\frac{1}{4}$] | D. | [0,$\frac{1}{4}$] |
A. | $\frac{{\sqrt{2}}}{2}$ | B. | $\frac{1}{2}$ | C. | $\sqrt{2}$ | D. | $\frac{{\sqrt{2}}}{4}$ |
A. | 21 | B. | 22 | C. | 23 | D. | 24 |