题目内容

1.已知F1,F2分别是椭圆$\frac{x^2}{a^2}$+y2=1(a>1)的左、右焦点,A,B分别为椭圆的上、下顶点,F2到直线AF1的距离为$\sqrt{2}$.
(Ⅰ)求椭圆的方程;
(Ⅱ)过F2的直线交椭圆于M,N两点,求$\overrightarrow{{F_2}M}$•$\overrightarrow{{F_2}N}$的取值范围;
(Ⅲ)过椭圆的右顶点C的直线l与椭圆交于点D(点D异于点C),与y轴交于点P(点P异于坐标原点O),直线AD与BC交于点Q.证明:$\overrightarrow{OP}$•$\overrightarrow{OQ}$为定值.

分析 (Ⅰ)由已知条件推导出2•$\frac{bc}{a}$=$\sqrt{2}$,b=1,由此能求出椭圆E的方程;
(Ⅱ)讨论直线MN的斜率是否存在,设出直线MN的方程,联立椭圆方程,运用韦达定理,结合向量的数量积的坐标表示,计算即可得到所求范围;
(Ⅲ)设直线CD:y=k(x-$\sqrt{2}$),(k≠0),则P(0,-$\sqrt{2}$),联立$\frac{{x}^{2}}{2}$+y2=1,得(1+2k2)x2-4$\sqrt{2}$k2x+4k2-2=0,由此利用韦达定理结合已知条件,能求出$\overrightarrow{OP}$•$\overrightarrow{OQ}$为定值1.

解答 解:(Ⅰ)∵F1,F2分别是椭圆E:$\frac{x^2}{a^2}$+y2=1(a>1)的左、右焦点,
A,B分别为椭圆的上、下顶点,F2到直线AF1的距离为$\sqrt{2}$.
∴2•$\frac{bc}{a}$=$\sqrt{2}$,b=1,a2-b2=c2,解得a=$\sqrt{2}$,
∴椭圆E的方程为$\frac{{x}^{2}}{2}$+y2=1.
(Ⅱ)MN的斜率不存在时,MN:x=1,解得M(1,$\frac{\sqrt{2}}{2}$),N(1,-$\frac{\sqrt{2}}{2}$),
$\overrightarrow{{F_2}M}$•$\overrightarrow{{F_2}N}$=-$\frac{1}{2}$;
MN的斜率存在时,设直线MN:y=k(x-1),代入椭圆方程可得
(1+2k2)x2-4k2x+2k2-2=0,
设M(x1,y1),N(x2,y2),则x1+x2=$\frac{4{k}^{2}}{1+2{k}^{2}}$,x1x2=$\frac{2{k}^{2}-2}{1+2{k}^{2}}$,
$\overrightarrow{{F_2}M}$•$\overrightarrow{{F_2}N}$=(x1-1,y1)•(x2-1,y2)=(1+k2)[x1x2+1-(x1+x2)]
=(1+k2)•($\frac{2{k}^{2}-2}{1+2{k}^{2}}$+1-$\frac{4{k}^{2}}{1+2{k}^{2}}$)=-$\frac{1+{k}^{2}}{1+2{k}^{2}}$=-$\frac{1}{2-\frac{1}{1+{k}^{2}}}$∈[-1,-$\frac{1}{2}$).
综上可得$\overrightarrow{{F_2}M}$•$\overrightarrow{{F_2}N}$的取值范围是[-1,-$\frac{1}{2}$];
(Ⅲ)证明:∵椭圆的右顶点C($\sqrt{2}$,0),
∴设直线CD:y=k(x-$\sqrt{2}$),(k≠0),则P(0,-$\sqrt{2}$k),
联立 $\left\{\begin{array}{l}{{x}^{2}+2{y}^{2}=2}\\{y=k(x-\sqrt{2})}\end{array}\right.$,得(1+2k2)x2-4$\sqrt{2}$k2x+4k2-2=0,
∴xC•xD=$\frac{4{k}^{2}-2}{1+2{k}^{2}}$,
∴xD=$\frac{4{k}^{2}-2}{(1+2{k}^{2}){x}_{C}}$=$\frac{2\sqrt{2}{k}^{2}-\sqrt{2}}{1+2{k}^{2}}$,
设点Q(x′,y′),直线BC的方程为y=$\frac{1}{\sqrt{2}}$(x-$\sqrt{2}$),A、D、Q三点共线,
则有 $\left\{\begin{array}{l}{y'=\frac{1}{\sqrt{2}}(x'-\sqrt{2})}\\{\frac{y'-1}{x'}=\frac{{y}_{D}-1}{{x}_{D}}}\end{array}\right.$,∴$\left\{\begin{array}{l}{x'=\sqrt{2}y'+\sqrt{2}}\\{\frac{1}{x'}=\frac{{y}_{D}-1}{{x}_{D}(y'-1)}}\end{array}\right.$,
∴$\sqrt{2}$y′+$\sqrt{2}$=$\frac{{x}_{D}(y'-1)}{{y}_{D}-1}$,
∴$\frac{y'-1}{y'+1}$=$\frac{\sqrt{2}({y}_{D}-1)}{{x}_{D}}$,
又∵yD=k(xD-$\sqrt{2}$),∴$\frac{y'-1}{y'+1}$=$\frac{\sqrt{2}k{x}_{D}-2k-\sqrt{2}}{{x}_{D}}$=$\sqrt{2}$k-$\frac{2k+\sqrt{2}}{{x}_{D}}$,
将xD=$\frac{2\sqrt{2}{k}^{2}-\sqrt{2}}{1+2{k}^{2}}$代入,得:$\frac{y'-1}{y'+1}$=$\frac{\sqrt{2}k+1}{1-\sqrt{2}•\sqrt{2}k}$,∴y′=-$\frac{1}{\sqrt{2}k}$,
∴$\overrightarrow{OP}$•$\overrightarrow{OQ}$=(0,-$\sqrt{2}$k)•(x',-$\frac{1}{\sqrt{2}k}$)=1.
即$\overrightarrow{OP}$•$\overrightarrow{OQ}$为定值1.

点评 本题考查椭圆方程的求法,考查向量的数量积是否为定值的判断与证明,解题时要认真审题,注意直线方程、韦达定理、椭圆性质等知识点的灵活运用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网