题目内容
【题目】已知数列的前项和
(1)求数列的通项公式;
(2)设数列的通项,求数列的前项和
【答案】(Ⅰ)(Ⅱ)
【解析】
试题分析:(Ⅰ)由和项求数列通项,注意分类讨论:当,得,当时,,最后分析能否合并:(Ⅱ)因为,所以数列的前项和为两部分求和的和,一部分利用错位相减法求前项和,一部分利用等比数列求和公式求前项和,利用错位相减法求和时,注意相减时项的符号变化,中间部分利用等比数列求和时注意项数,最后要除以
试题解析:(Ⅰ)当时,…………3分
当,得,(); ……………………………5分
(Ⅱ)由题意知=
记的前项和为,的前项和为,…………………6分
因为=,
所以
两式相减得2+=
所以, …………………………………………10分
又, …………………………………………12分
所以=
=. …………………………………………13分
练习册系列答案
相关题目