题目内容
在直角坐标系
中,点
到两点
的距离之和等于4,设点
的轨迹为
,直线
与
交于
两点.
(1)写出
的方程;
(2)若点
在第一象限,证明当
时,恒有
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022349243465.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022349259289.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022349275688.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022349259289.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022349477313.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022349493528.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022349477313.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022349524423.png)
(1)写出
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022349477313.png)
(2)若点
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022349602300.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022349649424.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022349680611.png)
(1)
;(2)详见解析.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022349696645.png)
试题分析:(1)根据椭圆的定义,可判断点的轨迹为椭圆,再根据椭圆的基本量,容易写出椭圆的方程,求曲线的方程一般可设动点坐标为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022349711499.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022349727882.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022349743674.png)
试题解析:(1)设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022349774568.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022349259289.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022349477313.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022349275688.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022349836791.png)
故曲线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022349477313.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022349696645.png)
(2)证明:设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022349899858.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240223499141026.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022349930310.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022349945881.png)
故
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240223499611027.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240223499772651.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022350008834.png)
因为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022349602300.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022350039431.png)
由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022350055732.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022350070444.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022350086528.png)
又
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022349649424.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022350117777.png)
即在题设条件下,恒有
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022349680611.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目
题目内容