题目内容
【题目】如图所示,某村积极开展“美丽乡村生态家园”建设,现拟在边长为1千米的正方形地块ABCD上划出一片三角形地块CMN建设美丽乡村生态公园,给村民休闲健身提供去处.点M,N分别在边AB,AD上. (Ⅰ)当点M,N分别是边AB,AD的中点时,求∠MCN的余弦值;
(Ⅱ)由于村建规划及保护生态环境的需要,要求△AMN的周长为2千米,请探究∠MCN是否为定值,若是,求出此定值,若不是,请说明理由.
【答案】解:(Ⅰ)当点M,N分别是边AB,AD的中点时,设∠DCN=∠BCM=θ, CD=BC=1,DN=BM= ,CN=CM= ,sinθ= ,cosθ= ,∠MCN= ﹣2θ,
所以cos∠MCN=cos( ﹣2θ)=sin2θ=2sinθcosθ= ,
所以∠MCN的余弦值是 .
(Ⅱ)设∠BCM=α,∠DCN=β,AM=x,AN=y,则BM=1﹣x,DN=1﹣y,
在△CBM中,tanα=1﹣x,在△CDN中,tanβ=1﹣y,
所以:tan(α+β)= = = ,(*)
△AMN的周长为2千米,所以x+y+ =2,化简得xy=2(x+y)﹣2,
代入(*)式,可得tan(α+β)= = = =1,
所以α+β= ,所以∠MCN是定值,且∠MCN= .
【解析】(Ⅰ)设∠DCN=∠BCM=θ,由题意利用勾股定理可求CN=CM= ,从而可求sinθ= ,cosθ= ,∠MCN= ﹣2θ,利用诱导公式,二倍角公式即可求∠MCN的余弦值.(Ⅱ)设∠BCM=α,∠DCN=β,AM=x,AN=y,可求BM=1﹣x,DN=1﹣y,tanα=1﹣x,tanβ=1﹣y,可得tan(α+β)= ,由x+y+ =2,化简得xy=2(x+y)﹣2,求得tan(α+β)=1,即可得解∠MCN是定值,且∠MCN= .
【考点精析】利用两角和与差的正切公式对题目进行判断即可得到答案,需要熟知两角和与差的正切公式:.
【题目】为了培养学生的安全意识,某中学举行了一次安全自救的知识竞赛活动,共有800 名学生参加了这次竞赛.为了解本次竞赛的成绩情况,从中抽取了部分学生的成绩(得分均为整数,满分为100 分)进行统计,得到如下的频率分布表,请你根据频率分布表解答下列问题:
序号 | 分组 | 组中值 | 频数 | 频率 |
1 | [60,70) | 65 | ① | 0.10 |
2 | [70,80) | 75 | 20 | ② |
3 | [80,90) | 85 | ③ | 0.20 |
4 | [90,100) | 95 | ④ | ⑤ |
合计 | 50 | 1 |
(1)求出频率分布表中①、②、③、④、⑤的值;
(2)为鼓励更多的学生了解“安全自救”知识,成绩不低于85分的学生能获奖,请估计在参加的800名学生中大约有多少名学生获奖?
(3)在上述统计数据的分析中,有一项指标计算的程序框图如图所示,则该程序的功能是什么?求输出的S的值.