题目内容
【题目】已知椭圆C:()的左右焦点分别为,.椭圆C上任一点P都满足,并且该椭圆过点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点的直线l与椭圆C交于A,B两点,过点A作x轴的垂线,交该椭圆于点M,求证:三点共线.
【答案】(Ⅰ)(Ⅱ)见解析
【解析】
(Ⅰ)根据求出,再将点代入椭圆方程得到,即可求出结果;(Ⅱ)由(Ⅰ)确定的坐标,设,,,以及直线的方程,联立直线与椭圆方程,结合韦达定理,求出直线的方程,即可证明结论成立.
设出
(Ⅰ)依题意,,故.
将代入中,解得,故椭圆: .…
(Ⅱ)由题知直线的斜率必存在,设的方程为 .……………
点,,,联立得.
即
,, …
由题可得直线方程为. …
又,.
直线方程为.
令,整理得
,即直线过点(1,0).
又椭圆的左焦点坐标为,∴三点,,在同一直线上.
【题目】某媒体对“男女延迟退休”这一公众关注的问题进行了民意调查,下表是在某单位调查后得到的数据(人数):
赞同 | 反对 | 合计 | |
男 | 5 | 6 | 11 |
女 | 11 | 3 | 14 |
合计 | 16 | 9 | 25 |
(1)能否有90%以上的把握认为对这一问题的看法与性别有关?
(2)进一步调查:
①从赞同“男女延迟退休”的人中选出人进行陈述发言,求事件“男士和女士各至少有人发言”的概率;
②从反对“男女延迟退休”的人中选出人进行座谈,设选出的人中女士人数为,求的分布列和数学期望.
附:
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
【题目】某研究所计划利用“神七”宇宙飞船进行新产品搭载实验,计划搭载新产品A、B,要根据该产品的研制成本、产品重量、搭载实验费用和预计产生收益来决定具体安排,通过调查,有关数据如表:
产品A(件) | 产品B(件) | ||
研制成本与塔载 | 20 | 30 | 计划最大资 |
产品重量(千克/件) | 10 | 5 | 最大搭载 |
预计收益(万元/件) | 80 | 60 |
试问:如何安排这两种产品的件数进行搭载,才能使总预计收益达到最大,最大收益是多少?
【题目】某公司为了鼓励运动提高所有用户的身体素质,特推出一款运动计步数的软件,所有用户都可以通过每天累计的步数瓜分红包,大大增加了用户走步的积极性,所以该软件深受广大用户的欢迎.该公司为了研究“日平均走步数和性别是否有关”,统计了2019年1月份所有用户的日平均步数,规定日平均步数不少于8000的为“运动达人”,步数在8000以下的为“非运动达人”,采用按性别分层抽样的方式抽取了100个用户,得到如下列联表:
运动达人 | 非运动达人 | 总计 | |
男 | 35 | 60 | |
女 | 26 | ||
总计 | 100 |
(1)(i)将列联表补充完整;
(ii)据此列联表判断,能否有的把握认为“日平均走步数和性别是否有关”?
(2)从样本中的运动达人中抽取7人参加“幸运抽奖”活动,通过抽奖共产生2位幸运用户,求这2位幸运用户恰好男用户和女用户各一位的概率.
附: