题目内容
【题目】如图,在直三棱柱中,,,,点E,F分别在,,且,.设.
(1)当时,求异面直线与所成角的大小;
(2)当平面平面时,求的值.
【答案】(1)60°(2)
【解析】
(1)推导出平面ABC,AC,建立分别以AB,AC,为轴的空间直角坐标系,利用法向量能求出异面直线AE与所成角.
(2)推导出平面的法向量和平面的一个法向量,由平面平面,能求出的值.
解:因为直三棱柱,
所以平面,
因为平面,
所以,,
又因为,
所以建立分别以,,为轴的空间直角坐标系.
(1)设,则,,
各点的坐标为,,,.
,.
因为,,
所以.
所以向量和所成的角为120°,
所以异面直线与所成角为60°;
(2)因为,,
,
设平面的法向量为,
则,且.
即,且.
令,则,.
所以是平面的一个法向量.
同理,是平面的一个法向量.
因为平面平面,
所以,
,
解得.
所以当平面平面时,.
练习册系列答案
相关题目
【题目】在某次测验中,某班40名考生的成绩满分100分统计如图所示.
(Ⅰ)估计这40名学生的测验成绩的中位数精确到0.1;
(Ⅱ)记80分以上为优秀,80分及以下为合格,结合频率分布直方图完成下表,并判断是否有95%的把握认为数学测验成绩与性别有关?
合格 | 优秀 | 合计 | |
男生 | 16 | ||
女生 | 4 | ||
合计 | 40 |
附:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |