题目内容
【题目】在锐角中,角的对边分别为,.
(1)求角的大小;
(2)若,求的取值范围.
【答案】(1) ; (2) .
【解析】
(1)利用两角和差的正弦公式进行化简即可,求角A的大小;
(2)先求得 B+C=,根据B、C都是锐角求出B的范围,由正弦定理得到b=2sinB,c=2sinC,根据 b2+c2=4+2sin(2B﹣) 及B的范围,得 <sin(2B﹣)≤1,从而得到b2+c2的范围.
(1)由=
得sinAcosB+sinAcosC=cosAsinB+cosAsinC,
即sin(A﹣B)=sin(C﹣A),
则A﹣B = C﹣A,即2A=C+B,
即A=..
(2)当a=时,∵B+C=,∴C=﹣B.由题意得 ,
∴<B<.由 =2,得 b=2sinB,c=2sinC,
∴b2+c2=4 (sin2B+sin2C)=4+2sin(2B﹣).
∵<B<,∴<sin(2B﹣)≤1,∴1≤2sin(2B﹣)≤2.
∴5<b2+c2≤6.
故的取值范围是.
【题目】随着节能减排意识深入人心以及共享单车在饶城的大范围推广,越来越多的市民在出行时喜欢选择骑行共享单车。为了研究广大市民在共享单车上的使用情况,某公司在我市随机抽取了100名用户进行调查,得到如下数据:
每周使用次数 | 1次 | 2次 | 3次 | 4次 | 5次 | 6次及以上 |
男 | 4 | 3 | 3 | 7 | 8 | 30 |
女 | 6 | 5 | 4 | 4 | 6 | 20 |
合计 | 10 | 8 | 7 | 11 | 14 | 50 |
(1)如果认为每周使用超过3次的用户为“喜欢骑行共享单车”,请完成列表(见答题卡),并判断能否在犯错误概率不超过0.05的前提下,认为是否“喜欢骑行共享单车”与性别有关?
(2)每周骑行共享单车6次及6次以上的用户称为“骑行达人”,视频率为概率,在我市所有“骑行达人”中,随机抽取4名用户.
① 求抽取的4名用户中,既有男生“骑行达人”又有女“骑行达人”的概率;
②为了鼓励女性用户使用共享单车,对抽出的女“骑行达人”每人奖励500元,记奖励总金额为,求的分布列及数学期望.
附表及公式:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |