题目内容
【题目】已知函数在x=-1与x=2处都取得极值.
(1)求的值及函数的单调区间;
(2)若对,不等式恒成立,求c的取值范围.
【答案】(1)见解析;(2)
【解析】
(1)函数在极值点的导数为零,利用求,再利用导数的正负求其单调区间(2)利用函数单调性,分析的最大值,只需即可.
(1)f′(x)=3x2+2ax+b,由题意得
即解得
∴f(x)=x3-x2-6x+c,f′(x)=3x2-3x-6.
令f′(x)<0,解得-1<x<2;
令f′(x)>0,解得x<-1或x>2.
∴f(x)的减区间为(-1,2),
增区间为(-∞,-1),(2,+∞).
(2)由(1)知,f(x)在(-∞,-1)上单调递增;在(-1,2)上单调递减;在(2,+∞)上单调递增.
∴x∈时,f(x)的最大值即为:f(-1)与f(3)中的较大者.
f(-1)=+c,f(3)=-+c.
∴当x=-1时,f(x)取得最大值.
要使f(x)+c<c2,只需c2>f(-1)+c,即2c2>7+5c,解得c<-1或c>.
∴c的取值范围为(-∞,-1)∪.
【题目】在对人们的休闲方式的一次调查中,共调查了124人,其中女性70人,男性54人.女性中有43人主要的休闲方式是看电视,另外27人主要的休闲方式是运动;男性中有21人主要的休闲方式是看电视,另外33人主要的休闲方式是运动.
(1)根据以上数据建立一个2×2的列联表;
(2)根据所给的独立检验临界值表,你最多能有多少把握认为性别与休闲方式有关系?附:独立检验临界值表
P(K2≥k0) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
【题目】已知某书店共有韩寒的图书6种,其中价格为25元的有2种,18元的有3种,16元的有1种.书店若把这6种韩寒的图书打包出售,据统计每套的售价与每天的销售数量如下表所示:
售价x/元 | 105 | 108 | 110 | 112 |
销售数量y/套 | 40 | 30 | 25 | 15 |
(1)根据上表,利用最小二乘法得到回归直线方程,求;
(2)若售价为100元,则每天销售的套数约为多少(结果保留到整数)?
【题目】2017年10月18日至24日,中国共产党第十九次全国人民代表大会在北京顺利召开.大会期间,北京某高中举办了一次“喜迎十九大”的读书读报知识竞赛,参赛选手为从高一年级和高二年级随机抽取的各100名学生.图1和图2分别是高一年级和高二年级参赛选手成绩的频率分布直方图.
(1)分别计算参加这次知识竞赛的两个年级学生的平均成绩;
(2)若称成绩在68分以上的学生知识渊博,试以上述数据估计该高一、高二两个年级学生的知识渊博率;
(3)完成下面2×2列联表,并回答能否在犯错误的概率不超过0.010的前提下,认为高一、高二两个年级学生这次读书读报知识竞赛的成绩有差异.
分类 | 成绩低于60分人数 | 成绩不低于60分人数 | 总计 |
高一年级 | |||
高二年级 | |||
总计 |
附:
P(K2≥k) | 0.100 | 0.050 | 0.025 | 0.010 | 0.001 |
k | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
K2=.