题目内容
【题目】设椭圆的离心率与双曲线的离心率互为倒数,且内切于圆.
(1)求椭圆M的方程;
(2)已知R是椭圆M上的一动点,从原点O引圆R:的两条切线,分别交椭圆M于P、Q两点,直线OP与直线OQ的斜率分别为,试探究是否为定值并证明你所探究出的结论.
【答案】(1)(2)为定值36,证明见解析
【解析】
(1)椭圆内切于圆,得出圆的长半轴长,根据离心率求出半焦距便可得解;
(2)依据直线与圆相切,得出的关系和切点坐标,可用的关系表示,整体代换即可求出定值.
解:(1)∵双曲线的离心率为,
∴椭圆M的离心率为
∵椭圆M内切于圆,的半径为
得:
所求椭圆M的方程为:
(2)设直线OP:,OQ:,设圆R过O点的切线方程为:
则有:,整理得:
故,又可得:
将代入得:
同理可得:
故为定值36
【题目】某同学用“随机模拟方法”计算曲线与直线所围成的曲边三角形的面积时,用计算机分别产生了10个在区间[1,e]上的均匀随机数xi和10个在区间[0,1]上的均匀随机数,其数据如下表的前两行.
x | 2.50 | 1.01 | 1.90 | 1.22 | 2.52 | 2.17 | 1.89 | 1.96 | 1.36 | 2.22 |
y | 0.84 | 0.25 | 0.98 | 0.15 | 0.01 | 0.60 | 0.59 | 0.88 | 0.84 | 0.10 |
lnx | 0.90 | 0.01 | 0.64 | 0.20 | 0.92 | 0.77 | 0.64 | 0.67 | 0.31 | 0.80 |
由此可得这个曲边三角形面积的一个近似值为( )
A.B.C.D.
【题目】某职称晋级评定机构对参加某次专业技术考试的100人的成绩进行了统计,绘制了频率分布直方图(如图所示),规定80分及以上者晋级成功,否则晋级失败.
晋级成功 | 晋级失败 | 合计 | |
男 | 16 | ||
女 | 50 | ||
合计 |
(1)求图中的值;
(2)根据已知条件完成下面列联表,并判断能否有的把握认为“晋级成功”与性别有关?
(3)将频率视为概率,从本次考试的所有人员中,随机抽取4人进行约谈,记这4人中晋级失败的人数为,求的分布列与数学期望.
(参考公式:,其中)
0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | |
0.780 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |